
EFI Analytics, Inc – Proprietary

 pg. 1 ©EFI Analytics, Inc.

EFI Analytics ECU Definition files

Authors

Phil Tobin

Revisions

Date Change By Version
September 14, 2016 Initial Release Phil Tobin 0.8

September 15, 2016 Added sections on
[ReferenceTables] and [LoggerDefinitions]
Fixed errors.

Phil Tobin 0.9

September 21, 2016 Fixed missing parameterStartOffset definition. Phil Tobin 0.91

September 22, 2016 Updated for nested #define and added
getByOffset function definitions.

Phil Tobin 0.92

September 22, 2016 Added information on password protected
dialogs

Phil Tobin 0.92.1

September 28, 2016 Updated spelling / grammar errors Phil Tobin 0.93

October 4, 2016 Added section on High Speed Run-time Phil Tobin 0.94

October 7, 2016 Added 3.49 support for xyLabel on TableEditor Phil Tobin 0.95

November 19, 2016 Added how to define dynamically resized
TableEditor views sec 4.4.5.5.1

Phil Tobin 0.96

January 12, 2017 Added indicatorPanel usage to [UiDialogs]
section

Phil Tobin 0.97

June 19, 2017 Added additional information on using cached
PDF’s.

Phil Tobin 0.98

October 25, 2017 Updated with info on resizable tables. Phil Tobin 0.99

January 12, 2018 Updated to include ini extensions through
iniSpec 3.58. New Functions and verticalMarker
for High Speed Loggers. Added FTPBrowser
usage

Phil Tobin 1.0

March 11, 2018 Added support for portEnabledCondition in
PortEditor definition.

Phil Tobin 1.01

April 2, 2018 Added support for DataLogView ini section Phil Tobin 1.02

Jan 15, 2019 Update new PcVariable extension uses. Phil Tobin 1.03

Jan 28, 2019 Added instructions for making
ControllerCommands visible to users.

Phil Tobin 1.04

EFI Analytics, Inc – Proprietary

 pg. 2 ©EFI Analytics, Inc.

June 28, 2019 Updated added iniSpec features for 3.64 Phil Tobin 1.05

July 8, 2019 Updated iniSpec for 3.65 Phil Tobin 1.06

Sept 26, 2019 Updated iniSpec for 3.66 Phil Tobin 1.07

March 6, 2020 Updated arrayValue function to specify use of
the array. Prefix on constants

Phil Tobin 1.08

Nov 3, 2021 Updated to include new ini attributes up to
iniSpec 3.69. Added information on using UDP
Streams for high speed loggers to the
LoggerDefinition section.

Phil Tobin 1.09

Nov 3, 2021 Included usage of short hand bit field option
definition for ECU Parameters

Phil Tobin 1.10

Nov 5, 2021 Added additional info on how dynamically sized
arrays are managed in section 4.4.5.5.1
Added sample rendering of UDP Stream data

Phil Tobin 1.11

May 16, 2022 Documented support for readoutPanel, readout
and runtimeValue UI entries.

Phil Tobin 1.12

Dec 19, 2022 Updated to include 3.73 ini updates. Phil Tobin 1.13

April 25, 2024 Updated to 3.76 ini specs including password
protection and an alternate command
formatting.

Phil Tobin 1.14

July 26, 2024 Added information on Panel visibility Phil Tobin 1.15

This document contains EFI Analytics proprietary information and is not to be distributed without specific

permission.

EFI Analytics, Inc – Proprietary

 pg. 3 ©EFI Analytics, Inc.

Contents

1 Summary .. 6

2 [TunerStudio] ... 8

2.1 Attributes ... 8

3 Command Set ... 13

3.1 General .. 13

3.2 Standard Commands ... 13

3.3 Read / Write Operations .. 13

3.4 Keywords and Setup.. 17

4 [Constants] ... 20

4.1 Summary ... 20

4.2 Expressions.. 20

4.3 Page ... 21

4.4 Attributes ... 21

4.5 Last Attributes Keywords .. 26

5 [PcVariables] .. 28

5.1 Specialized PcVariables: ... 28

6 [ConstantExtensions] ... 30

6.1 Keywords .. 30

7 [SettingGroups] and Directives.. 33

7.1 Overview ... 33

7.2 Usage ... 33

7.3 Additional Directives .. 34

8 [ControllerCommands] .. 36

8.1 General .. 36

8.2 User Displayed Controller Commands ... 36

9 [CurveEditor] ... 37

9.1 1D Array Graph Editors .. 37

9.2 Entry Syntax .. 37

9.3 Example Curve Editors ... 38

EFI Analytics, Inc – Proprietary

 pg. 4 ©EFI Analytics, Inc.

10 [TableEditor] .. 43

10.1 Overview ... 43

10.2 Syntax: ... 44

10.3 Resizable Tables .. 45

11 [OutputChannels] ... 47

11.1 Overview ... 47

11.2 Optimized OutputChannel capture .. 48

12 [GaugeConfigurations] .. 51

12.1 Gauge Categories ... 51

12.2 Gauge Templates ... 51

13 [Datalog] .. 53

14 [Menu].. 54

14.1 Standard Dialogs.. 54

14.2 Defining Menus ... 55

14.3 Example Menu Definition ... 57

15 [UserDefined] – [UiDialogs] ... 58

15.1 Overview ... 58

15.2 Section keywords ... 58

15.3 User Help ... 59

15.4 Defining Dialogs.. 60

15.5 Dialog Examples.. 80

16 [FrontPage] .. 84

16.1 Example FrontPage.. 85

17 [KeyActions] .. 85

18 [LoggerDefinition] ... 87

18.1 Overview ... 87

18.2 Example LoggerDefintions.. 90

19 [PortEditor] .. 94

20 [ReferenceTables] .. 97

20.1 Overview ... 97

20.2 Commands ... 97

EFI Analytics, Inc – Proprietary

 pg. 5 ©EFI Analytics, Inc.

20.3 Defining a Reference Table ... 97

20.4 Example entries: .. 99

21 [SettingContextHelp] ... 102

22 Expressions and Math Functions ... 103

22.1 Expressions .. 103

22.2 Operators ... 103

22.3 Functions ... 104

23 String Functions ... 107

23.1 Overview ... 107

24 [FTPBrowser] .. 108

24.1 Defining an FTP Browser: ... 108

25 [DatalogViews] .. 110

EFI Analytics, Inc – Proprietary

 pg. 6 ©EFI Analytics, Inc.

1 SUMMARY

EFI Analytics ECU Definition files, often known as .ecu or .ini files contain all information needed to interact

with a controller and present the information to users with defined views for a simpler, non-Engineer

usage. This document reviews each non-proprietary section to describe it’s function and how it is used. For

proprietary components, these components will be documented elsewhere.

Key file components:

 Controller Memory mapping

 Protocol commands (Basic Request Reply Protocol)

 Runtime data definitions

 Menu Options

 UI Dialog Definitions

 Data Log fields

 Gauge Template definitions

This provides the controller firmware developer full control of not just data exchange, but how settings will

be presented and modified while maintaining the feel of a fully integrated application.

Each section is loaded in line item order.

The load order for these sections is:

1. [TunerStudio]

2. Load all non-section specific commands and entries such as protocol commands and memory space

3. [PcVariables]

4. [Constants]

5. [OutputChannels]

6. [Replay]

7. [ExtendedReplay]

8. [TableEditor]

9. [GaugeConfigurations]

10. [ControllerCommands]

11. [PortEditor]

12. [CurveEditor]

13. [TriggerWheel]

14. [UiDialogs] / [UserDefined]

15. [FTPBrowser]

16. [Menu]

17. [KeyActions]

18. [Datalog]

19. [FrontPage]

20. [VerbiageOverrides]

EFI Analytics, Inc – Proprietary

 pg. 7 ©EFI Analytics, Inc.

21. [ConstantExtensions]

22. [TurboBaud]

23. [EventTriggers]

24. [VeAnalyze]

25. [WueAnalyze]

26. [Tools]

27. [LoggerDefinition]

28. [SettingContextHelp]

29. [DatalogViews]

EFI Analytics, Inc – Proprietary

 pg. 8 ©EFI Analytics, Inc.

2 [TUNERSTUDIO]

2.1 ATTRIBUTES1

2.1.1 signature

A signature is required in every ECU Definition file. It is used to identify and match the ECU Definition to the

firmware reported signature.

Example

 signature = "Firmware Prefix 1.51.02 ";

During initial interrogation of the controller, the signature will be requested.

If using an XCP transport, the GET_ID command will be issued in mode 1

For basic request reply protocol, the defined queryCommand command will be used.

queryCommand = "r\$tsCanId\x0f\x00\x00\x00\x14" ; Verify against signature.

versionInfo = "r\$tsCanId\x0e\x00\x00\x00\x3c" ; Title bar, this is the code version.

The resulting signature string will be used to match the current firmware with the ECU Definition file

required to interact with the controller.

2.1.2 iniVersion

iniVersion is to track changes and updates to the ECU Definition file. This allows a file to be identified as an

updated ECU Definition file while still for the same firmware. This is an optional attribute. A file with any

definition number assigned will be assumed to be more current than one without.

Applications may differ on how they treat this attribute.

There are 2 ways this can be treated depending on application configuration:

 Look for a newer iniVersion file when creating a project.

 Automatically update the ini in your project if the iniVersion of the installer for the same firmware /

signature is lower or not defined.

2.1.3 helpManualDownloadRoot

Defines a root URL that help documents for the firmware related to the ECU Definition file are located. This

can be referenced in help links added to Calibration dialog help menus.

helpManualDownloadRoot = http://www.somedomain.com/doc/pdf/

The Application will cache pdf help documents to the local computer for offline access, however, if the

document is not yet available on the local computer, it will check for the pdf at this url. See User Help .

http://www.msextra.com/doc/pdf/

EFI Analytics, Inc – Proprietary

 pg. 9 ©EFI Analytics, Inc.

2.1.4 iniSpecVersion

Within the [TunerStudio] section the iniSpecVersion is defined:

 iniSpecVersion = 3.46

This number is increased when new ini features become supported and it is the applications responsibility

to check this value upon ini load to insure it does support all features used within the ini file. EFI Analytics

Calibration tools will report an error that the user must upgrade the application if the iniSpecVersion found

in the ini file is greater than what that version of the application supports.

Recent ini feature to version

2.9 added support for:

- F32 in constants and OutputChannels

- Turbo Baud to activate during SD download

- Quick runtime read data "g" command.

3.0 added Support for:

- Hide menu expressions

- GetChannelValueByOffset, getChannelScaleByOffset, getChannelTranslateByOffset

- ConstantsExtensions - useScaleAsDivisor = Constant, { expression }

- Constant Digits expression

- channelSelector widget

3.1

- PortEditor support of activateOption = extendedDataInSize

- PortEditor support of activateOption = filter32BitChannels

- Support for fullTimeTurboEnabled, turn up baud as soon as connected.

3.11

- Added support for canDeviceSelector

3.12

- Added support for nextOffset keyword instead of hard number on Constants and OutputChannels.

3.13

- Added support for lastOffset keyword instead of hard number on Constants and OutputChannels.

3.2

- supports visibility on panels.

- basic expression based table sizing

3.21

- Support for Curve Lines to be added via expressions

- Support in string functions i.e "Cyl $stringValue(Fire_Ordr_High[0])"

- Support for string function in Help Topics.

- Support for string function in Row Item Label; fields.

3.22

- Support for maintainConstantValue in [ConstantsExtensions]

 ;maintainConstantValue = [someConstant], { some expression resolving to desired constant value }

 maintainConstantValue = stoich, { selectedFuel ==1 ? 9.86 : 14.7 }

3.23

- Support for String expression in help lines

- New String Function $getProjectsDirPath()

- New String function $getWorkingDirPath()

3.24

- Added helpManualDownloadRoot = "http://www.efianalytics.com/TunerStudio/docs/"

EFI Analytics, Inc – Proprietary

 pg. 10 ©EFI Analytics, Inc.

3.25

- Added parameterStartOffset pageable

- Added outputChannelStartOffset

3.26

- Added support for Replay section

3.27

- Added Support for oppositeEndian

3.28

- Added Support for controllerPriority - Constant Flag, Will save and load from msq, but always silently

update from the controller on connect.

- Added ExtendedReplay section

- OutputChannel hidden now based on expression in addition to hidden flag.

3.29

- Added [EventTriggers] section

- Added support for timedPageRefresh = [pageToRefresh], [timePeriodBetweenRefreshesInMs Expression]

3.30

- Added Support for showTextValues on CurveGraphs

- Added Visible Condition to Main Menu's

3.31

- Added Support for showPanel Key Actions.

3.32

- Added Support radio on bit fields.

 ;radio = [horizontal|vertical], "Label Text" , [ConstantName]

 radio = horizontal, "Master Enable" , can_poll

- Support for controllerPriority in ConstantsExtension section.

3.33

- Added support for EcuUiField to display values in Hex

 ;field = "Label Text", [Constant], {enabledExpression}, {visibleExpression}, displayInHex

 field = "Internal Value", int_val, {1}, {1}, displayInHex

- Added support for horizontal and vertical radio

3.34

- Added useMappingTable = constant, mappingFile.inc; Allows for scaling based on a lookup inc both ways.

 Entry in [ConstantsExtensions] section, set scale in Constants Section to 1.0;

 ;useMappingTable = afrBins1, WBafr100Zeit.inc

3.35

- Added std_bootstrap Standard Dialog for BS3

3.36 - 2015-05-23

- Added Support for triggeredPageRefresh, Ex:

 triggeredPageRefresh = 4, { AFRStoich0 != afrStoich0 || AFRStoich1 != afrStoich1}

3.37 - 2015-06-10

- Fix number of parameters for single Array tableLookup function.

3.38 - 2015-06-15

- Added support for indexCard layout.

3.39 - 2015-07-08

- Added support for closeDialogOnClick to commandButtons

3.40 - 2015-10-20

- Added support for expressions in filter qualifying value

- Added support for string expressions on indicator text

EFI Analytics, Inc – Proprietary

 pg. 11 ©EFI Analytics, Inc.

3.41 - 2015-12-16

- Added Support for rawValue as a default value in ConstantExtensions

3.42 - 2016-03-05 Added Support for showXYDataPlot on CurveGraphs

3.43 - 2016-03-17 Added Support for M08 data type, behaves like unsigned byte until maximum, then

becomes a negative signed byte.

3.44 - 2016-03-22 Added Support for delayAfterPortOpen - this will add a delay after opening port before

sending any communications.

3.45 - 2016-04-18 Added Support for canClientIdSelector.

 canClientIdSelector = "Remote CAN ID", can_poll_id2, {can_poll && (enable_pollPWM)}

3.46 - 2016-07-20 Added support for OutputChannel or expressions for maximum bytes in logFieldSelector

3.47 - 2016-09-01 Support for #define String Lists used as bit options with over-rides.
3.48 - 2016-09-22 Support for nested #define String Lists within #define String Lists.

3.49 - 2016-10-07 Support for xyLabels on [TableEditor] definitions.

3.50 - 2016-10-26 Support for hex integer values on many parameters (pageSize, parameterStartOffset, etc).

3.51 - 2017-01-11 Support for indicatorPanel added to UserDefined

3.52 - 2017-05-15 Support nextOffset and lastOffset for internalLogFields.

3.53 - 2017-10-26 Support for maximumElements added. This will limit the amount of memory to be used by

a resizable table.

3.54 - 2017-12-08 Added Vertical Marker for LoggerDef

 Added translate to LoggerRecord

3.55 - 2017-12-13 Added support for [FTPBrowser] ini section

3.56 - 2018-01-06 Added support for arrayValue function

3.57 - 2018-01-08 Added support for selectExpression function

3.58 - 2018-01-15 Support for PortEditor outputName.

3.59 - 2018-03-11 Added support for PortEditor portEnabledCondition

3.60 - 2018-04-02 Added support for DatalogViews Ini Section

3.61 - 2018-05-15 Added support for TuningViews & EncodedData Ini Section

3.62 - 2018-06-07 Added new PcVariable paramClasses to follow and store an OutputChannel

3.63 - 2019-01-10 Support String functions dynamically changing table and dialog title

3.64 - 2019-06-28 Added support for suppressing the graph on CurveEditors. Allows for chart only display

3.65 - 2019-07-08 Added support for forceBigEndianProtocol. When set to true, big endian will be used for

protocol offset and len regardless of type endian set for data.

3.66 – 2019-09-26 Added support for overlaidDataSetCount in the LoggerDefinition section.

3.67 - 2019-10-23 Added support for defaultXAxis in LoggerDefinitions, for generic Data this will be the initial

X Axis.

3.68 - 2020-10-27 Added support for readSdCompressed = [true/false] - Default is true.

3.69 - 2021-10-19 Added support for noCommReadDelay = [true/false] -

 Default is false; true disables legacy delays optimized for 115200 baud devices.

 Added support for defaultRuntimeRecordPerSec = 15; Changes the default data rate.

 Valid integer values are those in the Data Rate dialog.

 Added support for defaultIpAddress = 192.168.1.80 ; your desired IP4

 Added support for defaultIpPort = 2000; any valid integer

 Added support for bit options defined for specific values

 All undefined indexes will be filled with "INVALID". Example:

 1="Option 1", 3="Option 2"

 equivalent of: "INVALID", "Option 1", "INVALID", "Option 2"

3.70 – 2021-11-15 Added an optional attribute in the Constant definition allowing you to over-ride the

default column width.

3.71 - 2022-01-18 - Added support for portActiveDelay and portInactiveDelay in the port editor section.

EFI Analytics, Inc – Proprietary

 pg. 12 ©EFI Analytics, Inc.

 These fields are optional 1D arrays that will be set to the delay in changing Pin state

 after the condition becomes true.

3.72 - 2022-05-16 Added support for readoutPanel and readout added to UserDefined.

 Added support for runtimeValue as a field. Same as field Definition,

 but give it an OutputChannel name instead of Constant.

 Added support for ignoreMissingBitOptions = true, by default false.

 When true, warnings of missing bit options will be suppressed,

 missing elements will be filled with "INVALID"

3.73 – 2022-12-19 Added support for stopOnExit in the LoggerDefinition section.

when set to true, the logger will be stopped when leaving the view.

 In tunerStudio, this would be when the High Speed Logger tab is left.

 Added support for DataLogField Categories.

3.74 - 2023-12-21 Support for pushed #include files. inc or ini files.

3.75 - 2024-02-24 Added support for userPassword paramter on Dialogs, CurveGraphs & tables.

3.76 - 2024-03-19 Added support for suppressGraph on curve definition.

3.77 - 2024-04-25 Added support for Defining protocol commands per page

 instead of as long delimited arrays.

 Supported Commands: pageIdentifier, burnCommand, pageReadCommand, pageValueWrite,

 pageChunkWrite, crc32CheckCommand

EFI Analytics, Inc – Proprietary

 pg. 13 ©EFI Analytics, Inc.

3 COMMAND SET

3.1 GENERAL
If using a Basic request reply protocol, the commands used for common tasks are defined. However, there

are several key definitions required for proper memory mapping. This is generally in the [Constants]

section, but can be anywhere in the ecu/ini file if that keeps better order based on the command function.

3.1.1 Command Formatting

commands are comprised of String represented bytes delimited by a backslash \
In the case of the versionInfo Command: "r\$tsCanId\x0e\x00\x00\x00\x3c"
r – an ASCII r will be used 0x72
$tsCanId – this will be substituted with the Constant value tsCanId
x0f – hex value 0xF
…
The final bytes to be sent for this command assuming the Constant value of tsCanId = 0:
byte[0] = 0x72
byte[1] = 0x00
byte[2] = 0x0E
byte[3] = 0x00
byte[4] = 0x00
byte[5] = 0x00
byte[6] = 0x3C

3.2 STANDARD COMMANDS

3.2.1 Standard Identification Commands

 versionInfo = "Your Command Here" ; Title bar

 queryCommand = " Your Command Here " ; Verify against signature.

3.2.1.1 MegaSquirt 3 Example

 versionInfo = "r\$tsCanId\x0e\x00\x00\x00\x3c" ; Title bar
 queryCommand = "r\$tsCanId\x0f\x00\x00\x00\x14" ; Verify against signature.

3.3 READ / WRITE OPERATIONS
Read /Write commands and page size can be defined in a single line with an array of values, or they can be

defined after the page declaration.

3.3.1 nPages

Required for XCP or request reply protocol

Defines the number of pages in the memory mapping.

Example, Define 3 pages:

EFI Analytics, Inc – Proprietary

 pg. 14 ©EFI Analytics, Inc.

 nPages = 3

3.3.2 pageSize

Required for XCP or request reply protocol

A comma delimited set of integers defining the page sizes in order. The number of Integers provided must

match nPages set. Pages do not have to represent actual pages in the controller. Pages can be used to sub

divide the calibration data to work with smaller chunks or to reorder defined Constants to respect

dependencies.

Example – 3 pages all 1024 bytes long:

 pageSize = 1024, 1024, 1024

or

page = 1

 pageSize = 1024

 …

 …

page = 2

 pageSize = 1024

 …

 …

3.3.3 parameterStartOffset

Optional = Yes.

If defined, a memory start address is defined for each page. This start offset will be added to the Constant

offset for the final address of any given constant. If not defined the parameterStartOffset is assumed to be

0.

Address = parameterStartOffset[page] + constantOffset

3.3.4 pageIdentifier

pageIdentifier is not required. This is purely optional and to define a standard reference or prefix to a

command. In other read, write and burn commands this prefix can be referenced with a %2i notations.

It is always expected to be 2 bytes, thus the %2 notation with I representing identifier.

3.3.5 burnCommand

The Burn Command is the command to be sent to the controller to initiate a write to flash. There should be

a burnCommand defined for each page. If the firmware does not support a burn command for a specific

page, the command for that page should be an empty string.

By default, a burn command will be sent when any of the following occur:

 A settings dialog is closed.

EFI Analytics, Inc – Proprietary

 pg. 15 ©EFI Analytics, Inc.

 A “Burn” button is clicked.

 There is data written to a page other than the last page written to.

Automatic burn can be disabled at the applications discretion by editing the application properties file by

adding the following entries:

Change to false if you want either auto burn disabled. This is only recommended for advanced
purposes such as firmware development.
autoBurnOnCloseDialog - if true(default) a burn command will be sent when a dialog is closed
insuring all changes have been persisted to the controller.
autoBurnOnPageChange - if true(default) a burn command will be sent for the last write page
when a command to write data to a new page is received. This prevents writing to a new
page until all writes have been persisted
autoBurnOnCloseDialog=true
autoBurnOnPageChange=true

3.3.6 pageReadCommand

Optional – Required for all legacy protocols. An “XCP” per page notation required for XCP.

This command will be sent to request a read of a full data page. During interrogation full pages will be read,

thus a request of this type will be sent for each defined data page. It is expected that there will be a

command defined for each page that was set by nPages.

3.3.6.1 Request Reply Protocol Example:

pageReadCommand = "r%2i%2o%2c", "r%2i%2o%2c", "r%2i%2o%2c"

or

page = 1

 pageSize = 1024

 pageIdentifier = "\$tsCanId\x04"

 pageReadCommand = "r%2i%2o%2c"

 …

 …

page = 2

 pageSize = 1024

 pageIdentifier = "\$tsCanId\x04"

 pageReadCommand = "r%2i%2o%2c"

 …

Comma delimited command per page.

Command breakdown:

r ASCII ‘r’ or hexadecimal 0x72, any ASCII or hex
value is valid.

%2i This will be replaced with 2 bytes defined in
pageIdentifier. This is optional, and can be any

EFI Analytics, Inc – Proprietary

 pg. 16 ©EFI Analytics, Inc.

number of hard bytes defined with standard
notation \xXX\xXX\xXX

%2o This notation will be replaced with a 2 byte
offset/memory address of the start address. This
will be parameterStartOffset+offset. The value of
parameterStartOffset is 0 by default but can be
defined using parameterStartOffset

%2c Will be replaced with a 2 byte representation of
the length in bytes to be read.

Expected Response:

The bytes from page %2i, starting at offset %2o and of length %2c.

3.3.7 pageValueWrite

A defined Command to write a single byte.

Optional – Yes. If not defined, will always use pageChunkWrite. However, either pageChunkWrite or

pageValueWrite Must be defined for calibration. If there is no pageWriteChunk, bytes will be written 1 at a

time.

Example:

pageValueWrite = "w%2i%2o%2c%v", "w%2i%2o%2c%v", "w%2i%2o%2c%v

3.3.8 pageChunkWrite

A defined command to write a block of bytes to a Controller.

w ASCII ‘w’ or hexadecimal 0x77, any ASCII or hex
value is valid.

%2i This will be replaced with 2 bytes defined in
pageIdentifier. This is optional, and can be any
number of hard bytes defined with standard
notation \xXX\xXX\xXX

%2o This notation will be replaced with a 2 byte
offset/memory address of the start address. This
will be parameterStartOffset+offset. The value of
parameterStartOffset is 0 by default but can be
defined using parameterStartOffset

%2c Will be replaced with a 2 byte representation of
the length in bytes to be written.

%2v Will be replaces with a byte array of %2c in
length containing the values to be written.

3.3.9 crc32CheckCommand

Optional – Yes. When called, it is expected that a standard CRC32 is returned for the entire page.

EFI Analytics, Inc – Proprietary

 pg. 17 ©EFI Analytics, Inc.

If this is defined, it can be used to verify that the application local store matches what is on the controller.

Availability of this command can significantly speed interrogation time to the user.

The format of this command is entirely up to the firmware implementation and can be defined using the

standard notations within this document.

3.3.10 outputChannelStartOffset

Optional.

Defines a base address to be added to the %2o notation when reading runtime data using non-XCP block

reads. By default this value is 0, thus the offset will be the index in the stream, when set to a value

%2o = outputChannelStartOffset + streamOffset

Stream offset for each runtime value is defined in the [OutputChannel] section.

3.4 KEYWORDS AND SETUP

3.4.1 Endianness

endianness - define byte order of the MCU for multi-byte data types. This defaults to Motorola style Big

Endianness, but can be used to set little. Valid values are big and little. This is not used with XCP, the XCP

standard is followed.

Options:

endianness = big

endianness = little

3.4.2 blockingFactor

Optional, does not apply to XCP where Max CTO and Max DTO will be honored

Limits the largest chunk to be written or read. This limit applies to calibration data and runtime data reads.

This limit includes the payload data only, it does not count the commands toward the count.

blockingFactor = 256

Will limit read and write blocks to 256.

3.4.3 interWriteDelay

Time in ms to wait between each byte written to the controller.

In cases where there is no DMA or the MCU can only read incoming data so quickly without risk of

overflowing or overwriting the buffer, this will throttle the speed that it is written.

Example:

interWriteDelay = 3

EFI Analytics, Inc – Proprietary

 pg. 18 ©EFI Analytics, Inc.

This will create a 3 ms wait between each byte written to the controller. Data will still be read from the

controller as fast as possible.

3.4.4 tsWriteBlocks

Applications will write to the buffer at full speed with no wait between bytes. interWriteDelay will be

ignored.

Default: off

tsWriteBlocks = on ;

3.4.5 blockReadTimeout

For Basic Protocols, this defines the maximum time in ms the application will wait for response data from

the controller before timeout.

Example:

blockReadTimeout = 250

3.4.6 pageActivationDelay

Sets a wait time in ms after activating a data page before any read / write operations will be performed.

3.4.7 messageEnvelopeFormat

Defines any proprietary envelopes to wrap each command in. The envelope is implemented by the

application, but activated in the ini.

Applies to XCP: No

Optional: Not required if there is no envelope

Possible values:

messageEnvelopeFormat = msEnvelope_1.0

To read more on the MegaSquirt envelope used by MS3 1.1 and up and MS2 Extra 3.3+ see:

http://www.msextra.com/doc/pdf/Megasquirt_Serial_Protocol-2014-10-28.pdf

3.4.8 refreshLocalStoreOnActivity

By default the application will read cal data from the controller whenever a user calls certain views into

focus such as opening a settings dialog. This gives fall back insurance that the data on the controller is

always what is displayed even in the event there was a reset or failed write. This can be disabled using:

refreshLocalStoreOnActivity = false

http://www.msextra.com/doc/pdf/Megasquirt_Serial_Protocol-2014-10-28.pdf

EFI Analytics, Inc – Proprietary

 pg. 19 ©EFI Analytics, Inc.

EFI Analytics, Inc – Proprietary

 pg. 20 ©EFI Analytics, Inc.

4 [CONSTANTS]

4.1 SUMMARY
The primary goal of this section is to map the controller calibration data to referenced variables with Meta

data attributes:

 Naming

 Memory location – Numeric or keyword

 Parameter class - Keyword

 Data Type – Keyword

 Shape / bits

 Units – String or StringFunction

 Scale – Numeric or Expression

 Translate – Numeric or Expression

 Limits – Numeric or Expression

 Display precision – Numeric or Expression

The application will enforce and set limits and update presented values automatically when any dependent

components are updated.

Formatting of a Constant entry:

name = class, type, offset, shape, units, scale, translate, lo, hi, digits

4.2 EXPRESSIONS
In the definition of Constants, any numeric component can be replaced with an expression.

For example, this can allow you to display a temperature in °F or °C based on a set user preference.

Expressions are built using the values of other Constants, PcVariables or OutputChannels combined with

supported functions and operators to produce values for each attribute. This allows the values to be

dynamically set based on other conditions and preferences. Also See Expressions and Math Functions

Expressions can be used in in most cases instead of hard numeric values. This is common with scale and

translate

Constant values are loaded from calibration files in the order they are defined in the ECU definition.

Therefore, any referenced Constant must be defined prior to prevent changes in values.

Expressions in Constant definitions are evaluated dynamically as user settings are entered at runtime,

instead of at ini load time and take effect as the user is configuring the controller. The variable {afrMax}

(See Below) can be a Constant, PcVariable or any expression build from them. This same syntax can be

applied to scale, translate, digits, minimum or maximum value. The Standard comparators can be used

 within an expression.

You can also use compound conditions separated by:

 &&

EFI Analytics, Inc – Proprietary

 pg. 21 ©EFI Analytics, Inc.

 ||

This is a simple use of an expression; however, an expression can be as complex or as simple as you need.

In this case we are using a PcVariable named “afrMax” within the expression brackets to set the max value

on the constant “afrTable1”. The PcVariable “afrMax” can now be used in a UI dialog so that when a value

is entered it will set the max value allowed in the Z axis cells of afrTable1.

 ; name = class, type, offset, shape, units, scale, translate, min, max, digits

afrTable1 = array , U08, 48, [12x12], "AFR", 1.00, 0.00000, 9.00, {afrMax}, 1

In-line evaluation

In some instances, you may want different calculations performed based on a condition. This can be

performed with an in-line evaluation. In-line evaluations are commonly used in the [OutputChannels]

section of the ini file to evaluate a min or max parameter for a constant.

 afrMax = { condition ? true expression : false expression}

 1. 2. 3. 4.

The constant or PcVariable in this location will be set equal to the evaluated expression

Here you will use a bit constant to switch between the two optional expressions

 bit 0 = true any other bit value used will equal false.

1 – The new Channel name

2 – the Condition expression. May be a single constant or complex expression.

3 – This expression will be used if the condition of the condition expression at position 2 is true.

4 – This expression will be used if the condition of the condition expression at position 2 is false.

4.3 PAGE
At least 1 page is required. The start of a page is denoted by a row with a page tag followed by the page

number.

 page = 1

Page numbering starts with 1 in the ECU Definition.

Note: with XCP page numbering will start with 0, so in the ECU Definition the page will be assigned a

number 1 greater.

4.4 ATTRIBUTES

4.4.1 Name

The Constant name can be made up of alpha numeric characters and must start with a letter. Additional

characters such as _ are allowed, no mathematical operators should be used.

EFI Analytics, Inc – Proprietary

 pg. 22 ©EFI Analytics, Inc.

4.4.2 Parameter Class

There are 5 parameter class types. The set type will establish the basic characteristics of the defined

Constant and required attributes.

Parameter Class Required attributes

bits type, offset, list of indexed options

scalar type, offset, units, scale, translate, min, max, digits

array type, offset, units, shape, scale, translate, min, max, digits

String type, offset, length, displayColumns

oddArray type, offset, units, shape, scale, translate, min, max, digits

4.4.3 Type

Type defines the byte size of the Constant. Valid values include:

 U08 – Unsigned byte

 S08 – Signed Byte

 U16 – Unsigned Word

 S16 – Signed Word

 U32 – Unsigned DWORD

 S32 – Signed DWORD

 F32 – 32 bit floating point

 ASCII – For String param class

4.4.4 offset

The offset is an integer representing the distance from the start of the page to the 1st byte in the constant.

Keywords nextOffset and lastOffset are also valid.

nextOffset – Automatically moves to the next position after the last defined Constant. Thus if the last

defined constant had an offset of 21 and is a 2 byte type U16, nextOffset will now resolve to 23.

lastOffset – Will resolve to the same offsetValue of the last defined Constant. This is commonly used when

defining bit fields or multi-mapping memory.

At the beginning of each page, lastOffset and nextOffset will both be set to 0.

4.4.5 Shape

Shape is for parameter class bits and array. The notation and purpose is different in each instance.

4.4.5.1 bits

Shape defines the bits of interest within the byte using the notation: [lowBit : highBit] where lowBit

represents the least significant bit being used, highBit represents the most significant bit.

Example:

[0:3] – Represents using the lower nibble of the byte with 16 possible options, the upper nibble is still

available for other purposes – XXXX1111

EFI Analytics, Inc – Proprietary

 pg. 23 ©EFI Analytics, Inc.

[3:3] – Only bit 3 is of interest – XXXX1XXX

4.4.5.2 array

Shape defines the 1d or 2d array shape or the number of rows and columns in the table.

[8] – A 1D Array with 8 elements will be created.

[12x12] – A 2D array with 12 columns and 12 rows for a total of 144 elements will be created. Dimensions

are defined as [columns x rows]

4.4.5.3 bits

Are numbered 0 – 7, the rightmost being zero. The basic data word that stores bit fields must be unsigned.
You do not need to have a matching number of labels for the number of bits that you have specified. If a
greater number of bits is allocated than the number of labels needed the remaining unused bits will need
to be set to “INVALID” or the remaining bit values will be displayed in the drop down box as a numeric
value. If no text strings are provided, then the drop down box will display the bit values starting at 0 and
count up consecutively to the largest value available in conjunction with the number of bits allocated.
In some applications you may want the bit values to start at 1 instead of 0; this can be achieved with this
notation [0:2+1], this will display 1 through 4 in the drop down box. Below is a few examples.

1 bit needs 2 values 5 bits need 32 values
2 bits need 4 values 6 bits need 64 values
3 bits need 8 values 7 bits need 128 values
4 bits need 16 values 8 bits need 256 values

The bit param class is used to set a discrete value within part of a byte and present these options to a user

as a drop down list or radio button of String options.

; name = class, type, offset, shape, [Option1], [Option2], etc.

myConstant = bits, U08, 0, [0:2], "INVALID","One","Two","Three"

The Application will suppress any “INVALID” entries from being presented or selected.

If there are less entry options than possible options, the application will fill with the numeric values.

For long redundant option lists see #define

An alternate, short hand way to define the list of valid bit Options without needing to place the redundant

“INVALID” options:

myConstant = bits, U08, 0, [0:2], 1="Option 1", 3="Option 2"

This is the equivalent of:
myConstant = bits, U08, 0, [0:2], "INVALID", "Option 1", "INVALID", "Option 2"

4.4.5.4 scalar

A single numeric value that can be scaled and translated between the raw byte value and user/human

value.

myScalar = scalar, U08, 1, "", 0.019608, 0.00000, 1.00, 5.00, 2 ;

myScalar will be a single byte variable with a range of 0-5 and will be displayed with 2 decimal places.

EFI Analytics, Inc – Proprietary

 pg. 24 ©EFI Analytics, Inc.

4.4.5.5 array

Arrays are specified just like scalars, except that they have a "shape" entry in the fourth parameter. The

shape allows you to define lists or tables, for example [8] defines a list with eight values and [2x4] defines a

table with eight values (two rows and four columns). Tables may be stored in either "X-" or "Y-order." X-

order means that memory is mapped.

 [x1,y1] [x2,y1]...[xn,y1] [x1,y2]...

 Y-order would be

 [x1,y1] [x1,y2]...[x1,yn] [x2,y1]...

 To use the TableEditor, you must define two lists and a table, and the lengths of the lists must correspond

to the shape of the table.

Arrays can be 1D or 2D and will take byteSize * dimension1 * dimension2 bytes in length. Thus a U16 Type

2D array of 12x12 will require 288 bytes.

Indexing is row by row.

mySingleArray = array , U08, 346, [8], "ms", 0.10000, 0.00000, 0.00, 25.50, 1

This entry would create a single array 8 elements long of unsigned bytes with a range of 0-25.5 and 1

decimal place will be displayed. Units are set to ms

myDoubleArray = array , U08, 192, [12x12], ":1", 0.10000, 0.00000, 1.00, 25.00, 1

This entry would create a double array 12x12 elements long of unsigned bytes with a range of 0-25.0 and 1

decimal place will be displayed. Units are set to “:1”.

4.4.5.5.1 Dynamically sized Arrays.

Dynamically sized array Constants can be created for the TableEditor view. To accomplish this, the numeric

dimension values are replaced with an expression that will evaluate to the desired dimensions. Consistent

with ini expressions, they are to be surrounded with curly brackets. {}

To make dynamically sized tables:

[Constants]

 page = 1

 fuel_rows = scalar, U08, 98, "#", 1.0, 0, 12, 24, 0

 fuel_cols = scalar, U08, 99, "#", 1.0, 0, 12, 24, 0

 fuel_rpm = array, U16, 100, [{fuel_cols}],"rpm", 1, 0, 0, 10000, 0

 fuel_load = array, U16, 148, [{fuel_rows}],"kPa", 0.1, 0, 20.0, 300.0, 1

 veTable1 = array, U16, 196, [{fuel_cols}x{fuel_rows}], "%",0.1, 0, 0.0,200.0, 1

If a table is defined in the [TableEditor] section using the above defined constants, the table size will change

size based on fuel_rows and fuel_cols Constants and will change dynamically at run-time. The above

example will allow any dimension between 12x12 and 24x24. The Constants used for the X, Y and Z axis’

will always begin at the defined offset and use only the needed memory, the remainder of the memory will

be unreferenced.

When a 2D array has dynamic sizing is used, additional features are unlocked in TunerStudio for changing

the size and maintaining the Z axis data.

EFI Analytics, Inc – Proprietary

 pg. 25 ©EFI Analytics, Inc.

These re-size menus off the user the ability insert or delete rows or columns from the table as well as a

setting a whole new shape for the table. The insert menus are only shown if there is sufficient space

remaining in the Z axis array and the Row/Column count are within the min and max limits defined for the

X & Y constants. When a row or column is inserted, the initial values will be interpolated from the adjacent

cells. If the table is resized, the Z axis will use interpolation to most loosely represent the table of the

former size.

In all cases of re-sizing a table, the value of the constant for the row and column count will be updated and

the entire new Z axis array will be sent to the controller.

EFI Analytics, Inc – Proprietary

 pg. 26 ©EFI Analytics, Inc.

4.4.5.6 string

Allocates a byte range to hold ASCII characters to be used as a String.

 myStringConstant = string, ASCII, 0, 20

This entry would create a String 20 characters long starting at offset 0.

Optionally, you can over-ride the number of columns to display in the UI rendering:

 myStringConstant = string, ASCII, 0, 20, 10

4.4.5.7 oddArray

Rarely used read only parameter class. This is used to map memory to an existing single array, but will then

act as an array half as large only displaying every other row.

Y_Axis_Half =oddArray, U08, 80, [16], “kPa”, 1.0, 0, 0, 255, 0

Will create a 1D Array that spans 16 elements, but acts as an 8 element array displaying only every other

index. 1,3,5,7,9,11,13,15

4.4.6 Units

Each Constant can be assigned a Units String. This will be referenced throughout the application for display

to users on screen and in data logs where applicable.

4.4.7 Scale and Translate

Scale and translate are values used to convert the raw binary values to a user value. Where scale is a

multiplier, translate can be used to shift user value.

Applies to all parameter class other than bit and string

Scale and Translate can be fixed numeric values, or expression based.

The scaling and translation values are used as follows:
 rawValue = userValue / scale – translate
 userValue = (rawValue + translate) * scale

Alternatively, if a useScaleAsDivisor ConstantExtention is used and the expression resolves to true:
 useScaleAsDivisor = constantName, { some expression }
then:
 rawValue = (scale - (translate*userValue)) / userValue;
 userValue = scale / (rawValue + translate)

4.5 LAST ATTRIBUTES KEYWORDS
noMsqSave – Will not load the value from the Calibration file. This can also be defined in the

[ConstantsExtension] section and must be for bit type Constants.

EFI Analytics, Inc – Proprietary

 pg. 27 ©EFI Analytics, Inc.

controllerPriority – Will save the value to the Calibration file and load it from there if not online with a

controller. However, any time a controller is connected, the value from the controller is always silently

taken and replaces any value is in the local store.

controllerPriority Constants can only be changed while connected to the controller. Offline tuning can not

be performed as any change will be unquestionably taken from the controller on connect.

Example:

 SERIAL_NUMBER = scalar, U16, nextOffset, "", 1.0, 0, 0, 65535, 0, controllerPriority

; The SERIAL_NUMBER is saved for offline knowledge and use, but as soon as we connect to a controller,
the serial number of that attached controller will be unquestionably accepted.

EFI Analytics, Inc – Proprietary

 pg. 28 ©EFI Analytics, Inc.

5 [PCVARIABLES]

PcVariables – are defined similar to and behave as Constants. The key difference is that PcVarible Values

are not stored on the controller, only in the PC memory. They are saved to and loaded from Calibration

files.

The definition is the same as a Constant except there is no offset.

PcVariables can be referenced as a Constant in any place a Constant is used.

PcVariables are loaded from saved calibration files before Constants in the order they are defined in the

ECU Definition file, thus it is safe to reference PcVariables in Constant expression based attributes.

These are useful to display user preference options or define read only arrays to be used as axis values for

[CurveGraph] or [TableEditor] objects.

To use as an axis, define the array in this section, then populate the default values in the

[ConstantExtensions] section.

[PcVariables]

 bst_time_fixed= array, U08, [16], "ms", 0.32, 0, 0, 5.1, 2, noMsqSave

[ConstantExtensions]

 defaultValue = bst_time_fixed , 0.0 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56 2.88 3.20 3.52 3.84 4.16 4.48 4.80

Note the noMsqSave flag as this is a read only PcVariable and we do not want to save the value to the Calibration file.

5.1 SPECIALIZED PCVARIABLES:
There are 2 specialized PcVariable paramClass types. These allow you to create a PcVariable that represents

the value of an OutputChannel. This enables use in enable and visible expressions that can be evaluated

during offline tuning when Outputchannel values have not been initialized.

channelValueOnConnect – A specialize paramClass that will retrieve and store the value of an

OutputChannel. This will only retrieve the OutputChannel value on connect, then will assume the value

does change throughout the communication session. The value will be persisted in the cal file as a

PcVariable and be honored for off line tuning.

Syntax:

pcVariableName = channelValueOnConnect, referencedOutputChannel

EFI Analytics, Inc – Proprietary

 pg. 29 ©EFI Analytics, Inc.

continuousChannelValue – This will continuously monitor the OutputChannel state for changes during a

communication session. The last value during the communication session will be stored in the cal file for

offline tuning.

Syntax:

pcVariableName = continuousChannelValue, referencedOutputChannel

EFI Analytics, Inc – Proprietary

 pg. 30 ©EFI Analytics, Inc.

6 [CONSTANTEXTENSIONS]

The [ConstantsExtensions] section allows additional attributes and values to be applied to Constants

already defined in the [Constants] section.

6.1 KEYWORDS

6.1.1 requiresPowerCycle

Usage:

 requiresPowerCycle = constantName

Effect: The constant will be monitored for any user changes. If changed, a notification “Powercycle

Required” will be displayed on the dashboard. Normally used with any constant that requires the Controller

to be rebooted for the change to take effect.

constantName can be any Constant or PcVariable

6.1.2 defaultValue

Scalar Usage:

defaultValue = rpmhigh, 9000

Effect: sets the initial value of rpmhigh to 9000 If this constant or PcVariable has never been initialized.

Once initialized or changed by the user, what ever value they set will be used going forward. However, in a

case where the PcVariable or Constant is flagged noMsqSave, this value will always be used.

Array Usage:

defaultValue = tpsBins , 0 8 16 24 32 40 48 56 64 72 80 88 96 100

Provide a space separated list of values

6.1.3 rawValue

Similar to defaultValue except the values are provided as unscaled controller values so scaling can be

provided after the fact. This can be useful with expression based scale.

6.1.4 controllerPriority

Usage:

 controllerPriority = someConstant

Effect: The value of this constant will always silently accept the controller value. Values will not be loaded

from a Calibration file.

EFI Analytics, Inc – Proprietary

 pg. 31 ©EFI Analytics, Inc.

6.1.5 readOnly

Usage:

 readOnly = constantName

Effect: The Constant or PcVariable is marked as a readOnly entity where the controller value or

defaultValue will always drive the value. Values will not be loaded from Calibration Files or editable in the

UI.

constantName can be any Constant or PcVariable

6.1.6 reverseIndex

Usage:

 reverseIndex = someArrayConstant

Effect: the index of the elements in the array will be access in reverse order from the normal order low to

high. Yes some firmwares do order the arrays different between tables.

6.1.7 oppositeEndian

Usage:

 oppositeEndian = someConstantName

Effect: The byte order will be treated opposite of the global endianness for this constant. So if the global

Endianness is set to big, this constant will be treated with little endianness.

6.1.8 useMappingTable

Usage:

 useMappingTable = someConstantName, someMappingFile.inc

Effect: Scale and translate will be driven by the mapping within the inc file. This is used for cases where the

scale is not linear such as with temperature sensors.

See more on supported inc files at:

http://www.tunerstudio.com/index.php/manuals/104-supported-inc-file-formats

6.1.9 maintainConstantValue

Usage:

 maintainConstantValue = someConstantName, { some expression resolving to the desired value}

http://www.tunerstudio.com/index.php/manuals/104-supported-inc-file-formats

EFI Analytics, Inc – Proprietary

 pg. 32 ©EFI Analytics, Inc.

Effect: the targetConstant value will always be set to the result of the expression. Each component of the

expression is monitored to change to trigger an update to the constant.

6.1.10 maximumElements

Usage: Optional

 maximumElements = someConstantName, maximumElements

Where:

 someConstantName – A defined Constant of paramClass array with 2 dimensions and size defined

by other Constant(s).

 maximumElements – An integer value representing the maximum total number of cells to be

allowed in a resizable array.

Optional - If not defined, the number of maximum elements will be set to use all available memory to the

next defined Constant.

EFI Analytics, Inc – Proprietary

 pg. 33 ©EFI Analytics, Inc.

7 [SETTINGGROUPS] AND DIRECTIVES

7.1 OVERVIEW
Blocks of the ECU Definition can be placed in conditional blocks with if statements. The conditions are

limited to flag options that will be set in Project Properties and will require a project reload to take effect.

Thus it is preferred that expressions are used in constant and channel definitions over this method as they

will take effect immediately and do not require a disruption to the user. However, in some circumstances

this approach may be desirable.

7.2 USAGE
#set MY_CONDITION

#unset MY_OTHER

#if MY_CONDITION

 myDoubleArray = array , U08, 192, [12x12], ":1", 0.10000, 0.00000, 1.00, 25.00, 1

#else

 myDoubleArray = array , U08, 192, [12x8], ":1", 0.10000, 0.00000, 1.00, 25.00, 1

#endif

Using either #set or #unset initializes a flag and it will now appear in the Settings Tab of Project properties.

If initialized with #set, the default state will be active, #unset will initialize with a default state of

deactivated. In either case the user can over-ride this in Project Properties. In the above example, if

MY_CONDITION is active, the array will be defined as a 12x12, otherwise it will be a 12x8 array.

#set, #unset, #if, #else, #elif and #endif can be used anywhere in the ECU Definition, they are not limited to

[SettingGroups].

What is limited to [SettingGroups] is the definition of multi-choice options.

[SettingGroups]

 settingGroup = lambdaSensor, "Oxygen Sensor / Display"

 settingOption = NARROW_BAND_EGO, "Narrowband Sensor - Volts"

 settingOption = LAMBDA, "Wideband - Lambda"

 settingOption = DEFAULT, "WideBand - AFR" ; DEFAULT will be over looked and this

 ; will fall into the #else block of the statement.

This will now be presented in Project properties as 1 dropdown with 3 options. In your ECU Definition you
can then change the definition depending on the user selection.

7.2.1 Example
Example OutputChannel definition dependent on selection:

#if NARROW_BAND_EGO

 afrtgt1 = scalar, U08, 12, "Volts", 0.00489, 0.0

#elif LAMBDA

 afrtgt1raw = scalar, U08, 12, "Lambda", 0.1, 0.0

#else

EFI Analytics, Inc – Proprietary

 pg. 34 ©EFI Analytics, Inc.

 afrtgt1 = scalar, U08, 12, "AFR", 0.1, 0.0

#endif

7.3 ADDITIONAL DIRECTIVES

7.3.1 #define
#define allows you to define string lists with over-rides as a short cut for redundant bit field definitions.

These lists can also be created by referencing other #define lists as fragments to create a larger list.

7.3.1.1 Example:

A bit constant defined with the standard notation:

als_out_pin = bits, U08, 344, [0:2], "Off", "IAC1", "IAC2", "FIDLE"

Can be replaced with:

; the define would typically be at the top of the [Constants]

; but can be anywhere in the ECU Definitions file

#define PINLIST = "Off", "IAC1", "IAC2", "FIDLE"

; this is also supported to break into smaller lists:

#define LOWLIST = "Off", "IAC1"

#define MIDLIST = "IAC2"

#define PINLIST = $LOWLIST, $MIDLIST, "FIDLE"

; In both of the above, PINLIST would resolve to the same end result.

; the Constant definition would remain where it is, but reference the PINLIST

als_out_pin = bits, U08, 344, [0:2], $PINLIST

Or if you want to use the list, but change 1 or more items in the list:

; the define would typically be at the top of the [Constants]

; but can be anywhere in the ECU Definitions file

#define PINLIST = "Off", "IAC1", "IAC2", "FIDLE"

; the Constant definition would remain where it is, but reference the PINLIST

als_out_pin = bits, U08, 344, [0:2], $PINLIST, 1=”INVALID”, 2=”STEPPER”

The applied over-rides will result in the equivalent of index 1 being flagged INVALID and 2 changing names

from IAC2 to STEPPER.

7.3.2 #include

The #include will direct the parser, to load the additional file as part of the current ECU Definition

Usage:

#include myOtherFile.ini

The application will check for the file in the folder:

EFI Analytics, Inc – Proprietary

 pg. 35 ©EFI Analytics, Inc.

[ProjectFolder]/projectCfg/

If not found there it will check in the application install.

[AppInstallFolder]/inc/

EFI Analytics, Inc – Proprietary

 pg. 36 ©EFI Analytics, Inc.

8 [CONTROLLERCOMMANDS]

8.1 GENERAL
Controller commands are used to define instructions made up of 1 or more bytes to trigger an action by the

controller.

 commandName = command1, command2, commandn...

command in standard ini format, a command name can be assigned to 1 to n commands that will be

executed in order.

 This does not include any resultant protocol envelope data, only the response data itself.

WARNING!! These commands bypass TunerStudio's normal memory synchronization. If these commands

alter mapped settings (Constant) memory in the controller, TunerStudio will have an out of sync condition

and may create error messages.

It is expected that these commands would not typically alter any ram mapped to a Constant.

cmdReset = "xf1\x02\x87\x00"

controllerCommands can then be assigned to a Button in a dialog or assigned to a touch action on a

dashboard to be triggered and sent.

8.2 USER DISPLAYED CONTROLLER COMMANDS
By default, Controller Commands defined in the ini are for use only in the ini file and not visible for user

assignment. The reasoning for this is that these Commands can be powerful and the firmware developer

will likely want to maintain control over what ones are user actions. However, the ini developer can enable

specified ControllerCommands for user assignment. For instance, a ControllerCommand can be assigned for

single or double touch triggering from any Gauge or Indicator.

To enable the above cmdReset for user assignement, use this entry in the ControllerCommands section:

displayCommand = cmdReset, "Reset the ECU"

EFI Analytics, Inc – Proprietary

 pg. 37 ©EFI Analytics, Inc.

9 [CURVEEDITOR]

9.1 1D ARRAY GRAPH EDITORS
The [CurveEditor] section allows you to define graph views for editing 1D arrays. 1 to N 1D arrays can be

configured in a single view. A minimum of 2 – 1D arrays are required to define a Curve Graph, 1 X axis array

and a Y Axis array. You may add as many additional 1D arrays to the Y axis as desired, but the Y axis min

and max will be the same for all Y axis arrays. All arrays defined on a graph must be of the same length. For

tracking of runtime data on a curve graph, an OuputChannel matching the units of the X Axis array must be

set, this will keep the green bubble tracking to the X axis and the intersection on the 1st Y Axis Array. An

additional OutputChannel can be set for the Y Axis in which case the bubble will track to the 2 channels

intersection, this is often desirable with multiple Y axis arrays on a single graph.

The definition of a Curve Editor is a multi-line definition that can relatively basic or rather complex

depending on the need.

9.2 ENTRY SYNTAX

9.2.1 Required Entries
 curve = curveEditorName, "Title"

 columnLabel = "X Axis Label", "Y Axis Label"

 xAxis = xMin, xMax, numVerticalDivisions

 yAxis = yMin, yMax, numHorizontalDivisions

 xBins = xAxisArray, xChannel

 yBins = yAxisArray, yChannel

curveEditorName – A name you assign to this curve editor to reference from other sections. This an alpha-

numeric name that must start with a letter and not use mathematical operators

columnLabel – The labels to be displayed on the X and Y Axis, units of the Constant will also be appended.

If units are based on a String Function, they will dynamically be updated.

xAxis – Defines the min and max of the X Axis. These values can be numeric or an expression enclosed in

curly brackets { }. numVerticalDivisions will define the number of light grey lines painted vertically.

yAxis – Defines the min and max of the Y Axis. These values can be numeric or an expression enclosed in

curly brackets { }. numHorizontalDivisions will define the number of light grey lines painted horizontally.

xBins – Defines the X Axis Array (required), OutputChannel to track to (Optional) and a readOnly flag can

optionally be appended if you do not wish the x array values be edited in this view.

yBins – Defines the Y Axis Array (required), OutputChannel to track to (Optional, if used xChannel is

required). One yBins row is required, but multiples can be used by adding additional rows with other 1D

array references. In multi Y Axis Curve Editors, an expression parameter can be appended that evaluates to

whether that y array is active or not.

EFI Analytics, Inc – Proprietary

 pg. 38 ©EFI Analytics, Inc.

9.2.2 Optional Attributes
 topicHelp = "file://$getProjectsDirPath()/docs/HelpDoc_x.x.pdf#xxx”

 showTextValues = true ; Will show text inputs by default

 lineLabel = "Y Axis Label" ;

 size = 480, 350 ; Suggested width, height

 gauge = someGauge

 showXYDataPlot = true, xAxisLogField, yAxisLogField, { expressionPosition }

 supressGraph = false

topicHelp – A optional entry that will enable a help menu that deep links into the document.

helpManualDownloadRoot should be defined in the [TunerStudio] section

showTextValues – If set to true, the text cells will be visible by default, otherwise they will not be visible

until the user toggles them on. The default behavior is false

lineLabel – Will place a color coded label along the X axis. This is useful with multiple Y Axis Arrays, include

a lineLabel for each in the same order the Y Axis arrays were added.

size – Alter the default sizing of the dialog. Support for this is up to the application and platform.

gauge – By adding a reference to a gauge defined in [GaugeConfigurations], this gauge will be displayed in

the top right corner and the text cells will be laid out vertically under the gauge.

suppressGraph – If set to true, then only the table values will be shown, the graph and line will be

suppressed. False by default.

showXYDataPlot – This activates an X-Y plot but default using the field names provided. The expression

defines the start of the X Axis plot.

Example:

 showXYDataPlot = true, Time, TOSS_rpm, { Tmr_Enable > 0 }

This entry will activate an X-Y plot on the Curve Editor with the X Axis field being Time, Y Axis Field of TOSS-

rpm, the start point of the X Axis will be where Tmr_Enable becomes a non-zero value.

suppressGraph – By Default false. When set to true, the text entries will be displayed without the graph.

9.3 EXAMPLE CURVE EDITORS

9.3.1 Basic single 1D Array Curve Editor

1 X Axis array is always required, but can be set as a read only reference. In a case where the X Axis values

are hard values known to the controller, but not within the calibration data; you would create a read only

PcVariable array with default values matching those known to the controller.

EFI Analytics, Inc – Proprietary

 pg. 39 ©EFI Analytics, Inc.

9.3.1.1 View:

Basic 1D Array Editor – 1 Editable Array

Figure 9-1

9.3.1.2 Definition:
 curve = ae_posCor, "AE Position Correction"

 columnLabel = "TPS", "Correction"

 xAxis = 0, 56, 8

 yAxis = -100, 100, 8

 xBins = AE_tpsPer, TPS_Pct, readOnly

 yBins = AE_Pos_Table

 showTextValues = true

EFI Analytics, Inc – Proprietary

 pg. 40 ©EFI Analytics, Inc.

9.3.2 Curve Editor with 2 editable arrays and a gauge

9.3.2.1 View:

1D Array Editor – 2 Editable Arrays with Gauge

Figure 9-2

9.3.2.2 Definition:
 curve = coldAdvance, "Cold Advance"

 topicHelp = "file://$getProjectsDirPath()/docs/HelpDoc_x.x.pdf#coldadv"

 columnLabel = "Coolant", "Offset"

 xAxis = -40, {clthighlim}, 9

 yAxis = -10, 10, 5

 xBins = tempTable, coolant, readonly

 yBins = cold_adv_table

 gauge = cltGauge

EFI Analytics, Inc – Proprietary

 pg. 41 ©EFI Analytics, Inc.

9.3.3 Complex Curve Editor – Multi-Conditional Arrays

9.3.3.1 View:

Figure 9-3

9.3.3.2 Definition:

In this example we have 4-8 cylinders, but only want to display the left bank on this Curve editor. However,

the cylinder order is set in another constant. So this Curve Editor actually has 8 yAxis arrays assigned to it;

each with an expression to determine which arrays to actually present to the user. The expressions are

constructed so that it will resolve to true if the number is odd and less or equal than the maximum

cylinders. Another similar Curve Editor was constructed for the Right bank.

curve = cyl_Trim_Left, " Left "

 columnLabel = "", ""

 xAxis = 600, {rpmhigh}, 16

 yAxis = -15, 15, 5

 xBins = X_Axis_Table, RPM, readOnly

 yBins = ICF_Table_a, { engType == 0 ? Fire_Order_a <= cylCount / 2 : Fire_Order_a % 2 == 1 }

 yBins = ICF_Table_b, { engType == 0 ? Fire_Order_b <= cylCount / 2 : Fire_Order_b % 2 == 1 }

 yBins = ICF_Table_c, { engType == 0 ? Fire_Order_c <= cylCount / 2 : Fire_Order_c % 2 == 1 && num_of_cyl >= 0 }

 yBins = ICF_Table_d, { engType == 0 ? Fire_Order_d <= cylCount / 2 : Fire_Order_d % 2 == 1 && num_of_cyl >= 0 }

 yBins = ICF_Table_e, { engType == 0 ? (cylCount < 6 ? 0 : FireOrder_e <= cylCount /2): FireOrder_e % 2 == 1 && num_of_cyl >= 1 }

 yBins = ICF_Table_f, { engType == 0 ? (cylCount < 6 ? 0 : FireOrder_f <= cylCount /2): FireOrder_f % 2 == 1 && num_of_cyl >= 1 }

 yBins = ICF_Table_g, { engType == 0 ? (cylCount < 8 ? 0 : FireOrder_g <= cylCount /2): FireOrder_g % 2 == 1 && num_of_cyl >= 2 }

 yBins = ICF_Table_h, { engType == 0 ? (cylCount < 8 ? 0 : FireOrder_h <= cylCount /2): FireOrder_h % 2 == 1 && num_of_cyl >= 2 }

 ;gauge = afr1Gauge

 lineLabel = "Cyl $stringValue(Fire_Order_a)"

 lineLabel = "Cyl $stringValue(Fire_Order_b)"

 lineLabel = "Cyl $stringValue(Fire_Order_c)"

 lineLabel = "Cyl $stringValue(Fire_Order_d)"

 lineLabel = "Cyl $stringValue(Fire_Order_e)"

 lineLabel = "Cyl $stringValue(Fire_Order_f)"

 lineLabel = "Cyl $stringValue(Fire_Order_g)"

 lineLabel = "Cyl $stringValue(Fire_Order_h)"

 showTextValues = true

 size = 500, 350

EFI Analytics, Inc – Proprietary

 pg. 42 ©EFI Analytics, Inc.

9.3.4 Curve Editor with X-Y Plot Active

9.3.4.1 View:

Figure 9-4

9.3.4.2 Fit To

The “Fit To” Button will fit all selected points on the Curve Editor to the Data Logs X-Y plot values.

9.3.4.3 Definition:
 curve = des_ds_Tab, "Desired Drive Shaft Graph"

 columnLabel = "", ""

 xAxis = 0.0, 8.0, 16

 yAxis = 0, 13000, 8

 xBins = dsr_ds_grh, Time, readOnly

 yBins = Dsrd_DS_Table, TOSS_rpm

 gauge = Tachometer

 showTextValues = true

 showXYDataPlot = true, Time, TOSS_rpm, { Tmr_Enable > 0 }

EFI Analytics, Inc – Proprietary

 pg. 43 ©EFI Analytics, Inc.

10 [TABLEEDITOR]

10.1 OVERVIEW
The [TableEditor] section is used to define the relationship between 2 - 1D array constants and 1 - 2D

Arrays to produce a visual editor using 2D or 2D views.

Figure 10-1

Figure 10-2

The size of the 1D array constants used on the x & y axis must match the dimensions of the 2D array. The
entry to define a table is a multi-line entry as follows:

EFI Analytics, Inc – Proprietary

 pg. 44 ©EFI Analytics, Inc.

10.2 SYNTAX:
 ;table = table_id, map3d_id, "title"

 table = veTable1Tbl, veTable1Map, "VE Table 1", 2
 topicHelp = "file://$getProjectsDirPath()/docs/HelpFile1.2.pdf#someAnch"
 ; constant, OutputChannel

 xyLabels = “X Label”, “y Label”

 xBins = some1Darray, channelTrackingArray

 yBins = some1Darray, channelTrackingArray

 zBins = some2Darray

 upDownLabel = "UP Label", "Down Label" ; labels for the 3D view

 gridOrient = 250, 0, 340 ; Space 123 rotation of grid in degrees.

gridOrient – defines the default display angle in the 3D view. This is an optional entry

topicHelp – A optional entry that will enable a help menu that deep links into the document.

helpManualDownloadRoot should be defined in the [TunerStudio] section

xyLabels – [Optional] Set the X & Y Label to be displayed on the table. This can be a String or String

Function. The units of the underlying Constant will be appended. If the xyLabel is not defined, the labels

and units for the X & Y axis will be pulled from the underlying Constants. If the units are based on a

StringFunction, they will be updated dynamically on when conditions change.

Once defined a table can be access by being set as the target of a Menu or embedded in a dialog.

To display as a 3D view with a gauge cluster, use the map3d_id, for a standard 2D view use the table_id as

the target.

10.2.1 Example Entry:

 ;table_id, map3d_id, "title"

 table = veTable1Tbl, veTable1Map, "VE Table 1", 2
 topicHelp = "file://$getProjectsDirPath()/docs/HelpFile1.2.pdf#someAnch"
 ; constant, OutputChannel

 xBins = frpm_table, rpm

 yBins = fmap_table, fuelLoad

 zBins = veTable1

 upDownLabel = "RICHER", "LEANER"

 gridHeight = 2.0

 gridOrient = 250, 0, 340 ; Space 123 rotation of grid in degrees.

There is an optional readOnly flag that can be placed at the end of the xBins or yBins rows if you wish to

prevent users from editing in any particular view.

 table = veTable1Tbl, veTable1Map, "VE Table 1", 2
 ; constant, OutputChannel

 xBins = frpm_table, rpm, readOnly

 yBins = fmap_table, fuelLoad, readOnly

 zBins = veTable1

EFI Analytics, Inc – Proprietary

 pg. 45 ©EFI Analytics, Inc.

10.3 RESIZABLE TABLES
Dynamically sized tables are no different in the TableEditor section, but the underlying Constants are sized

based on expressions as described in 4.4.5.5.1

When a Table is configured to be resizable, the UI will manage the table values for any applied new size.

On any resize event, the values are captured, the table resized, the new values are applied and sent to the

box.

In the table widget, the following resize actions are available:

 Insert Column Before Selected

 Insert Column After Selected

 Insert Row Above Selected

 Insert Row Below Selected

 Delete Selected Row

 Delete selected Column

 Resize Table - Set the table to a specific number of rows and columns. The current table will then

be interpolated to this new shape.

Each of these options are available if currently valid.

This feature requires ini spec 3.53 is supported by the application.

Here is what needs to be changed in the ini:

; Create to new scalar Constants that will represent the array dimensions.

; These must be defined anywhere above the arrays in the ini file.

; The min and max for these constants will drive the minimum and maximum allowed rows and columns.

 FUEL_TABLE_ROWS = scalar, U08, 0, "", 1.0, 0, 8.0, 32.0, 0

 FUEL_TABLE_COLS = scalar, U08, 1, "", 1.0, 0, 8.0, 32.0, 0

; use the Dimension Constants to set the array size.

 FUEL_RPM_AXIS = array, U16, 2, [{FUEL_TABLE_COLS}], "", 1, 0, 0, 15000, 0

 FUEL_LOAD_AXIS = array, U16, 66, [{FUEL_TABLE_ROWS}], "", 0.1, 0, 20.0, 1000.0, 1

 veTable1 = array, U16, 130, [{FUEL_TABLE_COLS}x{FUEL_TABLE_ROWS}], "%", 0.1, 0,0.0, 200.0, 1

The application will detect that these tables are sized based on the constants and enabled the resize

actions in the widget. The dimensions of the arrays should be a single constant for the resizing tools to be

enabled.

Default values for FUEL_TABLE_ROWS and FUEL_TABLE_COLS should be defined in the

[ConstantsExtensions] section as demonstrated below. This is required for the table to have a valid size

prior to loading a saved calibration or connecting to an ECU.

The min and max number of rows will be driven by the min and max of FUEL_TABLE_ROWS as well as

maximumElements for the Z Axis.

The min and max number of columns will be driven by the min and max of FUEL_TABLE_COLS as well as

maximumElements for the Z Axis.

EFI Analytics, Inc – Proprietary

 pg. 46 ©EFI Analytics, Inc.

The start address / offset for each of the Constants will remain constant, but the size will vary based on the

values of FUEL_TABLE_COLS and FUEL_TABLE_ROWS.

This can be configured to alter the start upon request.

By default, as maximumElements for the Z Axis will be determined based on the available memory before

the next defined Constant. For example, veTable 1 has a starting address of 130 on the page, if the next

Constant on that page has an offset of 706, 576 will be used as the maximumElements.

The maximumElements can be over-ridden by creating an entry in the [ConstantsExtension] section:

 [ConstantsExtensions]

 maximumElements = veTable1, 576

 defaultValue = FUEL_TABLE_ROWS, 16 ; the default number of rows used for VE Table 1.

 defaultValue = FUEL_TABLE_COLS, 16 ; the default number of columns used for VE Table 1.

In this example the maximumElements is defined as 576, this is enough for a 24x24 table in a typical

configuration. However as the min and max for FUEL_TABLE_ROWS and FUEL_TABLE_COLS are set to 8 and

32, the application user will be able to resize a table to any dimension between 8x32 to 32x8 where:

FUEL_TABLE_ROWS * FUEL_TABLE_COLS < 576

Any of the following Row, Column pairs will be allowed by the application.

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

8 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256

9 72 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207 216 225 234 243 252 261 270 279 288

10 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320

11 88 99 110 121 132 143 154 165 176 187 198 209 220 231 242 253 264 275 286 297 308 319 330 341 352

12 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336 348 360 372 384

13 104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351 364 377 390 403 416

14 112 126 140 154 168 182 196 210 224 238 252 266 280 294 308 322 336 350 364 378 392 406 420 434 448

15 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 390 405 420 435 450 465 480

16 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480 496 512

17 136 153 170 187 204 221 238 255 272 289 306 323 340 357 374 391 408 425 442 459 476 493 510 527 544

18 144 162 180 198 216 234 252 270 288 306 324 342 360 378 396 414 432 450 468 486 504 522 540 558 576

19 152 171 190 209 228 247 266 285 304 323 342 361 380 399 418 437 456 475 494 513 532 551 570 589 608

20 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640

21 168 189 210 231 252 273 294 315 336 357 378 399 420 441 462 483 504 525 546 567 588 609 630 651 672

22 176 198 220 242 264 286 308 330 352 374 396 418 440 462 484 506 528 550 572 594 616 638 660 682 704

23 184 207 230 253 276 299 322 345 368 391 414 437 460 483 506 529 552 575 598 621 644 667 690 713 736

24 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552 576 600 624 648 672 696 720 744 768

25 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800

26 208 234 260 286 312 338 364 390 416 442 468 494 520 546 572 598 624 650 676 702 728 754 780 806 832

27 216 243 270 297 324 351 378 405 432 459 486 513 540 567 594 621 648 675 702 729 756 783 810 837 864

28 224 252 280 308 336 364 392 420 448 476 504 532 560 588 616 644 672 700 728 756 784 812 840 868 896

29 232 261 290 319 348 377 406 435 464 493 522 551 580 609 638 667 696 725 754 783 812 841 870 899 928

30 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960

31 248 279 310 341 372 403 434 465 496 527 558 589 620 651 682 713 744 775 806 837 868 899 930 961 992

32 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024

EFI Analytics, Inc – Proprietary

 pg. 47 ©EFI Analytics, Inc.

11 [OUTPUTCHANNELS]

11.1 OVERVIEW
OutputChannels have two basic forms:

1. Controller Channels - values contained in the runtime data stream received from the controller.

2. Expression based Channels - new channels based on any other channels or Constant using

mathematical operations and TunerStudio functions.

 Type one are primarily used by Firmware developers using the basic protocols, type 2 allows you to create

variables that can be referenced throughout the ECU Definition file and can easily be user extensions.

11.1.1 Type 1 format for scalar:
channelName = scalar, dataType, offset, "Units", scale, translate

channelName can be any alphanumeric string. It must start with a letter and contain no special characters

or white spaces.

dataType will be U08, S08, U16, S16, U16, S32 or F32. For F32

offset - the index of the 1st byte in the read datastream, this can be numeric or key words nextOffset and

lastOffset

Units can be a string or use String function expressions

scale and translate will be applied to the raw value using the standard formulas:

 rawValue = userValue / scale - translate

 userValue = (rawValue + translate) * scale

Scale and translate can be expressions

Example:
 seconds = scalar, U16, 0, "s", 1.000, 0.0

11.1.2 Type 1 format for bit

 channelName = bits, dataType, offset, bitsOfInterest

 Examples:

 ready = bits, U08, 11, [0:0]

 crank = bits, U08, 11, [1:1]

 startw = bits, U08, 11, [2:2]

 warmup = bits, U08, 11, [3:3]

 tpsaccaen = bits, U08, 11, [4:4]

 tpsaccden = bits, U08, 11, [5:5]

 6 bit fields defined from 1 byte at offset 11.
 the bits of interest are described in the format [n:m] where n is the starting bit and m the last bit.
 in the above examples, n=m so each channel is a single bit.

EFI Analytics, Inc – Proprietary

 pg. 48 ©EFI Analytics, Inc.

11.1.3 Type 2 format – Expression based Channels:

 channelName = { someExpression }, "Units"

 someExpression can be made up of any set of Constants, PcVariables and OutputChannels using any of the

TunerStudio operators and functions.

11.1.3.1 Example formula based Channels:

[OutputChannels]

vacuum = {(barometer-map)*0.2953007}, “inHg” ; Calculate vacuum in in-Hg.

boost = {map < barometer ? 0.0 : (map-barometer)*0.1450377}, “PSI” ; boost in PSIG.

 When using complex expressions as scale, translate or limit, it is generally preferred to create an

expression based OutputChannel that implements the complex components, then you can use that single

channel as a variable

 For more information on functions, see the Expressions and Functions section of this document

11.2 OPTIMIZED OUTPUTCHANNEL CAPTURE

There are 3 ways this is read, essentially they all use the equivalent of an UPLOAD command..

1) Un-optimized

2) Optimized blocking

3) Optimized – High Speed

11.2.1 Supporting Un-Optimized

The entire block from the start address to the highest defined channel is read using the largest block sizes

supported by the firmware.

To support un-optimized reading, 2 attributes should be set:

ochGetCommand – the Command that will be issued to read the defined output channel block;

ochBlockSize – the number of bytes to be expected when the command is issued.

Example:

ochBlockSize = 112 ; 112 bytes will be returns when the A command is issued

ochGetCommand = "A"

EFI Analytics, Inc – Proprietary

 pg. 49 ©EFI Analytics, Inc.

11.2.2 Optimized Blocking

The master always tracks what channels are currently being used at any point in time by anything

(Dashboards, data logging, UI widgets, etc..). It will use this info to break the reads of channels into blocks.

Thus it may read 3 block of sizes 40, 15, 3 in 3 UPLOADS instead of the entire defined block. There is a

hysteresis where X number of unused bytes exist between used bytes to account for the additional request

time.

To support Optimized blocking, the ochGetCommand must have the tags for offset and length and the

firmware must support this as a read command of varying start positions and lengths.

Example:

 ochGetCommand = "r\$tsCanId\x07%2o%2c"

At run-time the tags for offset “%2o” will be replaced with 2 bytes to represent the offset or address.

At run-time the tags for offset “%2c” will be replaced with 2 bytes to represent number of bytes to be read.

11.2.3 Full Optimized – High Speed

With full optimized; the master maintains an ordered table on the slave of offsets and lengths that are

currently being used. A command from master to slave is issues where the slave returns an ordered byte

array that only contains a subset of the data at the based on the offset and lengths set in a 1D array on the

controller. So no more data is returned than is currently needed. The master is then responsible for

tracking what channels are at each position in the run-time subset.

To support Full Optimized, additional attributes must be set and supported.

scatteredOffsetArray – this must point to a U16 Constant of paramClass array. The array size will drive the

maximum number of channels that can be read by this means. If it should overflow, the master will fall

back to run-time reads using 1 of the previous methods. Each U16 is populated in the following manor:

top 3 bits state data size in bytes, lower 13 bits contain the offset of the channel.

Size2 Size1 Size0 Off12 Off11 Off10 Off9 Off8 Off7 Off6 Off5 Off4 Off3 Off2 Off1 Off0

Data size chart:

1 = BYTE
2 = WORD
3 = DWORD
4 = QWORD

scatteredOchGetCommand – This defines the command to be sent to retrieve the runtime subset.

scatteredGetEnabled – an expression that will activate / deactivate high speed optimized run-time

 scatteredGetEnabled = { scatterRuntimeEnabled && (tsLocalCanId == tsCanId) }

Example ini entries:

EFI Analytics, Inc – Proprietary

 pg. 50 ©EFI Analytics, Inc.

[Constants]

…

…

page = 16

 qfrtfielddata= array, U16, 0, [256], "", 1.0000, 0.00000,0.00,65535, 0, noMsqSave

[OutputChannels]

 ochBlockSize = 512 ; change this if adding extra data to outpc

 ochGetCommand = "r\$tsCanId\x07%2o%2c" ; leave this alone

 scatteredOffsetArray = qfrtfielddata

 scatteredOchGetCommand = "g"

 scatteredGetEnabled = { scatterRuntimeEnabled && (tsLocalCanId == tsCanId) }

Once you define the scatteredOffsetArray in the ini, TunerStudio will maintain the values in that based on

what is actually being used. Inside TS OutputChannels are managed by a pub/sub engine. TS knows if there

is anything subscribed to every channel.

Whenever anything subscribes or unsubscribes to a channel, TS will update the values in the

scatteredOffsetArray.

When the scatteredOchGetCommand is issued, TS will be expecting a response containing what is defined

in the scatteredOffsetArray.

For Example:

 scatteredOchGetCommand = "g"

 scatteredOffsetArray = offsetArray;

TS only has 2 channels subscribed, 1 16 bit at offset 22, 1 32 bit channel at offset 48.

As the top 3 bits of the U16 is size in bytes, the lower 13 bits are the offset.

TS will write to offsetArray:

offsetArray[0] = 0xA016

offsetArray[1] = 0xC048

offsetArray[2-n] = 0x0000 – this indicates end of chunks, no more data is expected.

Then when TS sends a 'g' command, it will expect in response only 6 bytes (wrapped in the envelope f

coarse). The bytes are expected in the order they were defined, but TS always writes them in offset order.

Some things to note on the scatteredOffsetArray:

- This is normally set on a separate RAM only page with no burn command. It is expected that the

scatteredOffsetArray is uninitialized until TS writes something to it.

- TS will update this array if subscriptions change, the size of the returned data doesn't match what TS

expects or if a protocol error of 0x93 is received.

0x93 indicates the scatteredOffsetArray is not set or contains no data.

EFI Analytics, Inc – Proprietary

 pg. 51 ©EFI Analytics, Inc.

12 [GAUGECONFIGURATIONS]

The gauge configuration section is used to define Gauge Categories and the gauge templates available for

use in other sections and on the right click menu of all gauge clusters. The rendering of a gauge is

independent of the defined template and up to the application or gauge style.

12.1 GAUGE CATEGORIES
Like all ini sections, the GaugeConfigurations section is read in order line by line. You can assign a group of

gauges a category so the UI can then use this for grouping template. If there is no category assigned, the

application will generate generic template category names.

To set the category name for a set of gauge templates, use the tag:

gaugeCategory = "Some Category Name"

Once a line sets a category name, all gauge templates defined on subsequent rows will be assigned to that

category until a new category is set.

12.2 GAUGE TEMPLATES
Name = Case-sensitive, user-defined name for this gauge configuration.

Channel = Case-sensitive variable name defined in the OutputChannels section that engine data will be

returned to display on the gauge.

Title – String or String Function for Title displayed by the gauge.
Units – String or String Function for Units displayed below value on gauge.
Lo – Numeric value or expression defining the lower scale limit of gauge.
Hi – Numeric value or expression defining the upper scale limit of gauge.
LoD – Numeric value or expression defining the lower limit at which danger color is used.
LoW – Numeric value or expression defining the lower limit at which warning color is used.
HiW – Numeric value or expression defining the upper limit at which warning color is used.
HiD – Numeric value or expression defining the upper limit at which danger color is used.
vd – Numeric value or expression defining the decimal places in displayed value
ld – Numeric value or expression defining the label decimal places for display of Lo and Hi, above.
Active – Optional expression that determines if this gauge template should currently be available. If not
defined, always true

EFI Analytics, Inc – Proprietary

 pg. 52 ©EFI Analytics, Inc.

12.2.1 Example Gauge Entry

 Name Channel Title Units Lo Hi LoD LoW HiW HiD vd ld

SampleGauge = throttle, "Example Gauge Text", "Units", 0, 100, -1, -1, 100, 100, 0, 0, { 1 }

12.2.2 Example set of gauge templates with categories
gaugeCategory = "Sensor inputs1"

 mapGauge = map, "Engine MAP", "kPa", 0, {loadhigh}, 0, 20, 200, {loadhigh}, 1, 0

 fuelloadGauge = fuelload, "Fuel Load",{ bitStringValue(algorithmUnits , algorithm) }, 0, {loadhigh},

 0, 20, 200, {loadhigh}, 1, 0

 fuelload2Gauge = fuelload2, "Secondary Fuel Load", { bitStringValue(algorithmUnits , algorithm2) }, 0,

 {loadhigh}, 0, 20, 200, {loadhigh}, 1, 0

gaugeCategory = "Outputs"

 nitrous1_duty = nitrous1_duty, "Nitrous 1 Duty", "%", 0, 100, 100, 100, 100, 100, 0 ,0

 nitrous2_duty = nitrous2_duty, "Nitrous 2 Duty", "%", 0, 100, 100, 100, 100, 100, 0 ,0

; Warning, the above entries with expressions are wrapping, in real use it must be defined on a single line.

Figure 12-1

EFI Analytics, Inc – Proprietary

 pg. 53 ©EFI Analytics, Inc.

13 [DATALOG]

The DataLog section is used to define the channels available for data logging as well as formatting of those

channels.

13.1.1 Entry attributes

The entries are saved in the datalog file in the order in which they appear in the list below.
Each entry in the DataLog section will begin with entry =; followed by the entry attributes.

entry = Channel , Label, Type, Format, Enabled Cond, Lag

Channel - Case sensitive name of output channel to be logged.
Label - String written to header line of log.
Type - normally float or int, no longer used.
Format - C-style output format of data or tag
 Boolean tags: yesNo, onOff, highLow, activeInactive
 For Hex output: hex
Enabled Cond - This field will only be logged if the enable
 condition is blank or resolves to true.
Lag - If for any reason you need to have a field lag
 n records behind realtime. Use a number or expression

When using a Boolean format, a String will be logged based on the channel value. If channel value = 0 it is
false the logged String will be (“No”, “Off”, “Low”, “Inactive”) any non-zero value is considered true and
(“Yes”, “ On”, “High”, “Active”) will be logged depending on the flag used.

Units are logged for each entry if they have been assigned to the underlying OutputChannel
Entries can optionally be assigned to a category by adding the keyword:
category and assigning a String value. All entries after the set category will be assigned the String.
Category will only be included in the log if a log format supports it such as mlg 2.0

13.1.2 Example:

[Datalog]

 ; Channel Label Type Format Enabled Cond Lag

 ; ----------- -------- ----- ------ ------------ ---

category = “Common”

 entry = time, "Time", float, "%.3f"

 entry = seconds, "SecL", int, "%d"

category = “Engine”

 entry = rpm, "RPM", int, "%d"

 entry = map, "MAP", float, "%.1f"

 entry = boostpsig, "Boost psi", float, "%.1f"

 entry = throttle, "TPS", float, "%.1f"

 entry = maf, "MAF", float, "%.01f", { MAFOption }

 entry = mafload, "MAFload", float, "%.1f", { MAFOption }

 entry = table3Active, "VE Table 3", int, "activeInactive"

 entry = pinH1, "Pin H1 state", int, "highLow"

In actual use you may commonly have far more.

EFI Analytics, Inc – Proprietary

 pg. 54 ©EFI Analytics, Inc.

14 [MENU]

Menu entries will be displayed as actionable menus to the user. The [Menu] section allows you to define

menu entries. Menus can be placed on main application tool bar, any defined dialog tool bar as well as the

main window calibration toolbar. The Calibration Tool bar is the primary space for calibration related menu

items.

Figure 14-1 Toolbar Navigation

Each menu item can reference and open in a dialog any of the following:

 Any dialog defined in [UserDefined] or [UiDialogs]

 Curve Editor defined in [CurveEditor]

 2D Table Defined in [TableEditor]

 3D Table tuning dialog defined in [TableEditor]

 Standard Dialogs that are specific to the ECU being serviced

14.1 STANDARD DIALOGS
Standard dialogs are dialogs that are part of the application. The design and layout is built into the

application, but they are launched as needed via menu items that reference the standard dialog name.

Some of these dialogs have no ECU Definition configuration and are not flexible enough to be used other

than for a specific firmware family, others can be configured to work with many firmwares.

14.1.1 Standard Dialogs

 std_injection

 std_realtime

 std_accel

 std_ms3Rtc

 std_ms3SdConsole

 std_ms2gentherm – Configurable, see [ReferenceTables] section

 std_ms2geno2 – Configurable, see [ReferenceTables] section

 std_constants

 std_warmup

 std_port_edit – Configurable, see [PortEditor] section

 std_trigwiz

14.1.2 Additional std_ keyword

 std_separator – this allows you to place a separator on the menu for grouping of menu items.

EFI Analytics, Inc – Proprietary

 pg. 55 ©EFI Analytics, Inc.

14.2 DEFINING MENUS
There are 3 primary keywords for defining Menus:

 menuDialog – set the window or view

 menu – set or create the menu to append subMenu items

 subMenu – define a new actionable menu to be added to the set menu

 groupMenu – define a Menu to be listed under the set menu and hold child menus

 groupChildMenu – same as subMenu, but added to the set groupMenu

Figure 14-2

14.2.1 menuDialog

Used to set the window or view. Once a menuDialog is set, it will be used for all subsequent menu

definitions until set to a different window or view. The value can be the name of any dialog defined in

[UiDialogs] /[userDefined] or the keyword main if the menu is to show on the main application window.

14.2.1.1 Usage:
 menuDialog = main

 ;or

 menuDialog = definedDialogName

14.2.2 menu

The menu keyword is used to set the top level menu name if a menu by the set name already exist on the

set menuDialog, that menu will be used for subsequent subMenu entries, otherwise a new menu will be

created and added to the set menuDialog.

On the menuDialog main, the application has predefined main menu bar menus, by setting the menu to

one of the predefined application menus, your menu will always be added to that menu. However, when

set to any other names, where that menu is created will be determined by the user selected navigation.

The default navigation “Toolbar Style” will create a new button as seen in Figure 14-1 Toolbar Navigation.

On the main window, the following menus will already on the window:

 File

 Options

 Data Logging

EFI Analytics, Inc – Proprietary

 pg. 56 ©EFI Analytics, Inc.

 Communications

 Tools

 Help

If any of those are set as the menu, all subMenu items will be added to the existing menu.

14.2.2.1 Usage:

To create a Menu with the Label “Nitrous Oxide”, all subMenu and groupMenu entries to follow will be

appended to this menu until a new menu is set.

 menu = “Nitrous Oxide”

14.2.3 subMenu

The subMenu keyword defines the actionable menu item. The menu item will be produced with the

provided label, upon user activation the targetDialog will be launched.

14.2.3.1 Usage:

The menuDialog and menu must be set prior to defining a subMenu.

 subMenu = targetDialog, "Menu Label"

14.2.4 groupMenu

A groupMenu is a Menu or folder for children among subMenu object. The groupMenu allows adding a

group of childGroupMenu items.

14.2.4.1 Usage:
 groupMenu = "Group Menu Label"

14.2.5 groupChildMenu

A groupMenuChild behaves the same as a subMenu, but will be appended to the last defined groupMenu

as opposed to last menu set.

14.2.5.1 Usage:
 groupChildMenu= targetDialog , "groupMenuChild Label"

14.2.6 Hot Keys

A hot key for a menu can be set by including an & (ampersand) within the text string label of the menu.

When a hot key is set, then when a user pressed Alt+[HotKey] the menu will activate. This will be set only

when the menu created, if the menu component is being set, but has already created, it will do nothing.

Caution must be taken as to not create conflicts with other items in the ECU Definition as well as the

application hot keys.

14.2.6.1 Example set a Hot Key of x to a menu:
 menu = “Nitrous O&xide”

“Nitrous Oxide will still be displayed to the user, but as Nitrous Oxide so the hot key

is underlined.

EFI Analytics, Inc – Proprietary

 pg. 57 ©EFI Analytics, Inc.

14.2.7 Visibility and enablement

The menu, subMenu, groupMenu and groupChildMenu can optionally have enable and visibility

expressions assigned. As with Components, the application will react dynamically at runtime. To use these,

add 1 expression as a parameter for enable / disable and 2 if visible / invisible is desired.

14.2.7.1 Enable / Disable Example:
 menu = “Nitrous Oxide”, { nitrousActive }

In this case the created “Nitrous Oxide” menu will be enabled or disabled based on the state of

nitrousActive. This assumes there is an OutputChannel or Constant defined with the name nitrousActive

and it will be 0 when Nitrous is not active.

14.2.7.2 Visible / Invisible
 Menu = “Nitrous Oxide”, { nitrousActive }, { nitrousActive }

In this case the created “Nitrous Oxide” menu will be visible or invisible based on the state of nitrousActive.

This assumes there is an OutputChannel or Constant defined with the name nitrousActive and it will be 0

when Nitrous is not active.

Note there still must be an enable / disable expression as a place holder even if it is a redundant or empty

{} entry.

14.3 EXAMPLE MENU DEFINITION
 menuDialog = main ; set to the main window

 menu = "Menu in main"; set the menu

 subMenu = targetDialogName, "subMenu Item 1"

 subMenu = targetDialogName2, "subMenu Item 2"

 groupMenu = "Group Menu"

 groupChildMenu= dialogName1 , "groupMenuChild 1"

 groupChildMenu= dialogName2 , "groupMenuChild 2"

 groupChildMenu= dialogName3 , "groupMenuChild 3"

 groupChildMenu= dialogName4 , "groupMenuChild 4"

Figure 14-3

This same menu can be moved to the VE Table Dialog by simply changing the menuDialog

EFI Analytics, Inc – Proprietary

 pg. 58 ©EFI Analytics, Inc.

Figure 14-4

 menuDialog = veTable1Tbl

 menu = "Menu in main"

 subMenu = targetDialogName, "subMenu Item 1"

 subMenu = targetDialogName2, "subMenu Item 2"

 groupMenu = "Group Menu"

 groupChildMenu= dialogName1 , "groupMenuChild 1"

 groupChildMenu= dialogName2 , "groupMenuChild 2"

 groupChildMenu= dialogName3 , "groupMenuChild 3"

 groupChildMenu= dialogName4 , "groupMenuChild 4"

15 [USERDEFINED] – [UIDIALOGS]

15.1 OVERVIEW
The primary purpose of this section is to define the dialogs and panels containing the settings your wish to

present to the user. In the most basic form, dialogs are defined that contain references to scalar, bit and

string Constants. The Application will use the Meta data of these Constants to present them as UI

components within a dialog / panel. Each dialog defined can then be invoked directly from a defined

[Menu] or [KeyAction] by referencing the dialog name as the target. You can also use each dialog as a panel

to be placed on other dialogs using several layouts to create more complex views. In addition to dialogs

defined here, you can place Curve Editor, Table Editor and Standard Dialogs on these complex views.

Visibility and enablement for all dialogs, panels, sub-panels and row items can be defined using standard

expressions.

15.2 SECTION KEYWORDS

15.2.1 Top level keywords

Top level keywords start the definition of a new entity; the new entity may have keywords of its own to

further configure attributes that are defined following the initial definition

 dialog

o topicHelp – set a help reference that will check for a local copy or retrieve from Internet

o webHelp – launch a web browser to a set url

o panel – Add a child dialog to the dialog being defined

EFI Analytics, Inc – Proprietary

 pg. 59 ©EFI Analytics, Inc.

o field* – render a scalar, bit or string Constant in the default manor

o gauge – Place a single round dial in the dialog.

o liveGraph – Place a multi-line graph in the dialog.

 graphLine – define 1 or more lines on a liveGraph

o logFieldSelector* – MegaSquirt3 SD card field selector

o settingSelector* – Define a drop down of option that will set 1-n Constant values

 settingOption – set a predefined set of constant values for a settingSelector

o radio* – Render a bit Constant using radio buttons as opposed to dropdown.

o channelSelector* – Drop down list of OutputChannels

o canDeviceSelector* – Dropdown list of ECU’s set up in the project

o canClientIdSelector* – Screens MegaSquirt CAN ID’s for friendly dropdown

o slider – Render a Scalar Constant as a slider as opposed to numeric input

o commandButton* – Render a button that will send controllerCommand(s)

o displayOnlyField* – Display scalar and bit Constants in a read only fashion

o array1D – Display a list of numeric inputs for a 1D array

o indicatorPanel – Display a group of indicators that will have an on/off state based on an

expression

o readoutPanel – Create a group of runtime value readouts that can be placed in the dialog

like a panel.

 Readout – the definition for each readout added to a readoutPanel

o runtimeValue – Display an OutputChannel value in a dialog. Entry is the same as a field, but

provide an OutputChannel name instead of a constant

o userPassword – A reference to a 4 byte U32 defined Constant. This constant should be

initialized to 0, that indicates no password.

* RowItem – basic component typically placed on a basic yAxis dialog.

15.3 USER HELP
 topicHelp = "file://$getProjectsDirPath()/docs/HelpDoc_x.x.pdf#xxx”

topicHelp – A optional entry that can be assigned to any dialog, Curve Editor or Table editor that will

enable a help menu on the defined dialog for help specific to the settings in that dialog. This can be used in

3 ways:

15.3.1 URL

Set a standard url to a page or pdf on the internet:

 topicHelp = "http://helpwebsite.com/helpdocs/help.html#anchor"

When used in this manor; upon user action the url will be opened in a web browser.

15.3.2 Local Cached PDF

Set a file URL to open a pdf from the local file system. The application will check the local file system for the

referenced document. It is found it will be opened, if not and internet is available the application will use

the defined helpManualDownloadRoot to download it from the internet to the local location for current

and future access. Deep links and anchors are supported.

EFI Analytics, Inc – Proprietary

 pg. 60 ©EFI Analytics, Inc.

a helpManualDownloadRoot should be defined in the [TunerStudio] section

Example:

 topicHelp = "file://$getProjectsDirPath()/docs/HelpDoc_x.x.pdf#xxx”

With the above entry, the the portion of the url “file://$getProjectsDirPath()/docs/” resolves to the local dir

[ProjectsDir]/docs and pdf document will be stored in this local directory by the name HelpDoc_x.x.pdf.

This allows it to be accessed by multiple projects without repeated download and will keep your help

documents in a single location. If the file is not found at this local location, the application will attempt to

download the pdf from the url helpManualDownloadRoot/HelpDoc_x.x.pdf and store it locally for offline

use.

Once the local cached pdf file is available, it will be displayed using an integrated PDF viewer. Anchors are

honored.

15.3.3 Plain Text help

Plain text help can be defined in this section, then accessed by name from a [Menu].

Example entry:

 help = helpReferenceName, "Help Title"

 webHelp = "http://helpwebsite.com/helpdocs/help.html#anchor" ; optional webHelp

 text = "This is help text that the user can see if the select the"

 text = "menu defined in the [Menu] section referencing helpReferenceName "

15.4 DEFINING DIALOGS
Once a Dialog is defined, it can then be used as a panel to be added to other dialogs, so in some cases they

will be referred to interchangeably as dialogs and panels.

The definition of a dialog will always begin with a row using the keyword dialog:

dialog = dialogName, “Dialog Title”, dialogLayout, password

dialogName – required and used to reference this dialog elsewhere
“Dialog title” – Optional. If present a border with title will be displayed.

 A title of “.” Will create a border with no title.

 An empty string “” title will remove the border and title.
dialogLayout – Optional, set a layout as defined in the Dialog Layouts section. By default yAxis will be used.
password – Set a password that will be required to open the dialog. Generally for use with encrypted ECU
Definition files. Also see userPassword for user set passwords.

All subsequent lines are assumed to be defining a component that belongs to this dialog until another row

starting with the keyword “dialog” is found. A dialog can contain 0-n components with the limit based on

screen space or the maximum supported by the dialog layout used.

15.4.1 Dialog Components

Dialog Components are any item you are able to add to a defined dialog. They generally fall into 2

categories:

EFI Analytics, Inc – Proprietary

 pg. 61 ©EFI Analytics, Inc.

1. Row Item Component – Are added directly to a dialog definition as the next component within the

dialog layout.

2. Panel Component – The panel keyword allows you to embed additional larger components into a

dialog. This can include other dialogs defined in this section, Table Editors, Curve Editors and

Standard Dialogs.

Row Item Components allow the addition of Constants to dialogs with a simple one line entry. The addition

of the Panel Component provides a means to add other components as well as nest dialogs within each

other. By gaining a good understanding of the dialog layouts, there are few limits of how you can present a

group of settings to the user.

15.4.2 Adding Components to a dialog

15.4.2.1 field

field is the most basic and commonly used component. A field will have a label and reference a single bit,

scalar or string Constant and render it in the default manor based on the Constant attributes.

o bit – Rendered as a dropdown with the provided list of selections as defined in the bit Constant

section of this document.

o Scalar - Rendered as a numeric text input applying the limits and display format defined in the

Constants section.

o String – Rendered as a free form text entry and enforcing length

Format of adding a field:

 field = “User Label”, someConstant, { enabledExpression }, {visibleExpression }

Only attribute 1 is required, the label. The label can also contain a String Function to change based on

conditions.

If there is no Constant defined, the label will be displayed using the full row. If enabledExpression or

visibleExpression are not defined, they are always assumed to be true.

Additional label red and blue coloring can be applied by prefixing your string with a # or !. If there are units

defined for the underlying Constant, they will be appended to the label within parenthesis.

Thus this code snippet will produce the dialog below:

 dialog = map_sample_dialog, "MAP Sample Settings"

 field = "My Full Row Label"

 field = "!A red setting label", mapsample_opt2

 field = "#A blue setting label", mapsample_window

 field = "A normal setting label", mapsample_angle

; Note, mapsample_opt2, mapsample_window and mapsample_angle would be Constants

EFI Analytics, Inc – Proprietary

 pg. 62 ©EFI Analytics, Inc.

Figure 15-1

15.4.2.2 radio

The radio component provides an alternative way to render a bit Constant. Only bit type Constants are

valid. The radio buttons can be laid out horizontally or vertically.

Format of a radio entry:

radio = orientation, "Label Text”, bitConstant, { enable }, { visible }

Required:

Orientation – Defines the direction they are added. Must be either vertical or horizontal.
Label – Can be an empty string “” if no label is desired.
bitConstant – The name of a bit Constant defined in the [Constants] section.

Optional:
enable – The expression driving enable / disable. If not present always true.
visible – The expression driving visibility. If not present always true.

By changing the top bit Constant in the previous dialog to a radio, this is the resulting dialog:

dialog = map_sample_dialog, "MAP Sample Settings"

 field = "My Full Row Label"

 radio = horizontal, "A radio label", mapsample_opt2

 field = "#A blue setting label", mapsample_window

 field = "A normal setting label", mapsample_angle

EFI Analytics, Inc – Proprietary

 pg. 63 ©EFI Analytics, Inc.

Figure 15-2

15.4.2.3 displayOnlyField

The syntax of a displayOnlyField works the same as a field. However, the value will be rendered as a read
only label and will not be editable by the user. This is valid for bit or scalar Constants

dialog = map_sample_dialog, "MAP Sample Settings"

 field = " My Full Row Label"

 displayOnlyField = "!A red setting label", mapsample_opt2

 field = "#A blue setting label", mapsample_window

 field = "A normal setting label", mapsample_angle

Figure 15-3

15.4.2.4 slider

The slider Component provides an alternative presentation for scalar Constants. Instead of presenting a

numeric text input, a slider widget will be displayed with the value as a label. Sliders can be vertical or

horizontal.

Example Syntax:

dialog = exampleDialog, "Example Dialog Title Text", xAxis

 slider = "Short Description", scalarConstant, horizontal

 slider = "Short Description", scalarConstant, vertical

EFI Analytics, Inc – Proprietary

 pg. 64 ©EFI Analytics, Inc.

15.4.2.5 settingSelector

A settingSelector allows you to combine a list of preset values for a set of scalar Constants into a single

drop down.

The row defining a settingSelector has only a Label as a parameter. The keyword settingOption is then used

to add the values to the dropdown. You may add as many settingOptions to a settingSelector as desired.

settingOption entries are made up of a user label and 1-n name value pairs. Upon selecting an Option from

within the UI, the name / value pairs will be used to set the Constant for all defined for that settingOption.

Upon initializing the UI will look through all settingsOptions for one that matches the current settings and

set the drop down to the matching option. If no match is found, it will be set to a display of Custom

allowing the user to enter their own values.

Sample dialog with a settingSelector:

Figure 15-5

Figure 15-4: Slider Example

EFI Analytics, Inc – Proprietary

 pg. 65 ©EFI Analytics, Inc.

Dialog Definition:

 dialog = sensorCal, "Calibrate MAP/Baro"

 field = "#MAP Sensor"

 settingSelector = "Common MAP Sensors"

 settingOption = "MPX4115", map0=10.6, mapmax=121.7

 settingOption = "MPX4250", map0=10, mapmax=260

 settingOption = "GM 1-BAR", map0=10, mapmax=105

 settingOption = "GM 2-BAR", map0=8.8, mapmax=208

 settingOption = "GM 3-BAR / MPXH6300", map0=1.1, mapmax=315.5

 settingOption = "MPXH6400", map0=3.5, mapmax=416.5

 settingOption = "AEM 3.5 BAR", map0=-42.3, mapmax=386.3

 settingOption = "AEM 5.0 BAR", map0=-64.6, mapmax=581.7

 field = "Value At 0.0 Volts", map0

 field = "Value At 5.0 Volts", mapmax

The Constants map0 and mapmax are scalar Constants defined in the [Constants] section.

15.4.2.6 gauge

The gauge component allows you to place a single round dial on a dialog. You can place multiple gauge

components on a single dialog.

Figure 15-6

Syntax:

 dialog = exampleDialog_gauge_panel, "Gauge Panel"

 gauge = throttleGauge

throttleGauge is defined in [GaugeConfigurations]

15.4.2.7 array1D

The array1D component is really more of a macro that a single component. Its usage is to generate a group

of numeric inputs for a 1D array Constant. You can provide a Label, that can include the element number

using the %INDEX% keyword. The %INDEX% keyword will be replaced at runtime with the array index+1 to

keep counting as most end users would expect it. In most cases a Curve Editor is used and is a preferred

presentation.

EFI Analytics, Inc – Proprietary

 pg. 66 ©EFI Analytics, Inc.

Syntax:

 dialog = frpmTableBins, "RPM Table Bins for Fuel Tables"

 array1D = "", "Fuel RPM %INDEX% ", frpm_table

frpm_table is a 1D Array defined in the Constants section.

An unused empty string is required before label for legacy support.

This dialog will be render as below:

Figure 15-7

15.4.2.8 liveGraph

The liveGraph Component defines a line graph with 1 or more runtime values to be displayed on the graph.

It can be placed within the dialog using various layouts, but will typically be the North or South component

of a border layout. The definition row of a liveGraph contains the name, title and any placement the layout

may require. It is then followed by graphLine rows.

Each graphLine row is required to have an OutputChannel defined, then optional untits, min/max and auto

scale tags. If no mins and maxes are defined, the application will look to any gauge defined in the

[GaugeConfigurations] section and default to those units and min / max values.

 ;liveGraph = graphName, “Graph Title”, layoutPlacement

 liveGraph = timeaeGraph, "AE Graph", South

EFI Analytics, Inc – Proprietary

 pg. 67 ©EFI Analytics, Inc.

 graphLine = afr1

 graphLine = TPSdot, "%", -2000, 2000, auto, auto

 graphLine = MAPdot, "%", -2000, 2000, auto, auto

 ;graphLine = Channel,units, min, max, autoMin, autoMax

In this rendering, the 1st graphLine is assigned afr1 with no other values, thus it will set units and min/max

from the Gauge Template defined in [GaugeConfigurations] that is also assigned the afr1 OutputChannel.

graphLine 2&3 have set units, min, max and auto scale set. These would be used over any Gauge

Templates. The min and max values are initialized to those defined.

Figure 15-8

The auto scale flags allow the liveGraph to automatically adjust the min and max based on witnessed run-

time data. Thus limits will change once live data is received.

Figure 15-9

15.4.2.9 panel

The panel component allows you to place any other defined dialog, Table Editor, Curve Editor or standard

dialog within a new defined dialog. An enable expression can be defined for each panel placed in a dialog

that will be evaluated during any change in conditions to adjust the enabled state of all components in the

EFI Analytics, Inc – Proprietary

 pg. 68 ©EFI Analytics, Inc.

panel. By using the various layouts described in this document with multiple dialogs defined as snippets,

there is a great deal of control to present settings to the user exactly as you want them.

Syntax:

 dialog = dialogName, "", dialogLayout

 panel = complexComp1, West, {enableExpression}, {visibleExpression}

 panel = complexComp2, East, {enableExpression}, {visibleExpression}

complexComp1 and complexComp2 can be any other dialog previously defined, a Table Editor, Curve

Editor, Standard Dialog.

enableExpression and visibleExpression are optional parameters.

Note: All sections are read in order, any dialog referenced by panel, must be defined before this dialog

definition. The [TableEditor] and [CurveEditor] sections are loaded before [UiDialogs] therefore will always

be available.

See the Dialog Layouts section of this document for examples of dialogs with panels and layouts.

15.4.2.10 commandButton

The commandButton component allows the placement of an actionable button on a dialog. It will be

rendered as a Button with your defined label. When clicked, it will send a command defined in the

[ControllerCommands] section of the ini file.

Syntax:

commandButton = "Label Text", command, { Enabled Condition }, optionalFlags

 command – Name reference to Controller Command defined in the [ControllerCommands] section.

 Enable Condition – Optional; any expression to determine if the Button should be enabled or not.

 optionalFlags – Append a comma delimited list of non-conflicting options.
o clickOnClose – If set, this will always send the command when the dialog is closed
o clickOnCloseIfEnabled – If set, will send the command if the enable condition is true
o closeDialogOnClick – if set, the dialog will be closed after clicking the commandButton
o showMessageOnClick – If set a message will be displayed to the user after clicking. This

option must always be followed by an attribute containing a string message to be
displayed.

Example:
commandButton = "Reboot", cmdReboot, showMessageOnClick, “Controller Restarted”

cmdReboot is defined in the [ControllerCommands] section with an instruction that will reboot the

controller.

This button upon clicking will send the instruction to the controller, then popup a message “Controller

Restarted”

15.4.2.11 logFieldSelector

The logFieldSelector component is a complex component to relate DataLogFields with OutputChannels

when using the Basic request/reply protocol. By providing 2 equal length array Constants, it will display all

EFI Analytics, Inc – Proprietary

 pg. 69 ©EFI Analytics, Inc.

DataLogField entries to the user as available and allow them to select a subset. The 2 provided arrays will

be populated with the offsets and lengths defined for all OutputChannels required to produce the selected

DataLogFields. When data log fields that are based on formula based OutputChannels, this component will

find all under lying Controller OutputChannels required to produce the field and add them to the arrays.

It will allow the user to add DataLogFields until one of the following occur:

 The offsetConstant len is not sufficient

 The total of all values in the lenConstant is equal to maxBytes expression value

Note: As there is no record of selected DataLogFields, but actually all the underlying Controller

OutputChannels required to produce the DataLogField, the selected fields may not be exactly what the user

selected. All other DataLogFields that have all channels needed will appear in the “Selected Datalog Field”

list whether the user specifically selected it or not.

For example:

AFR1 Error is based on a formula OutputChannel requiring AFR1 and AFR1Target.
 afr1Error = { afr1 – afr1Target }

So if a user adds AFR1 and AFR1 Target to the Selected Fields, AFR1 Error will implicitly be added also.

Figure 15-10

Syntax:

logFieldSelector = selectorName, "Title", offsetConstant, lenConstant, {maxBytes}

 selectorName – The name of the defined Log Field Selector to be used when referencing or adding

this to a dialog.

 “Title” – The Title to be displayed at the top, “Log Field Selector”

 offsetConstant – A 1D array defined in the Constants [Section], this must be large enough to fit the

maximum number of channels expected to be logged.

EFI Analytics, Inc – Proprietary

 pg. 70 ©EFI Analytics, Inc.

 lenConstant – A 1D array the same length as offsetConstant. This will be populated with the size of

each OutputChannel in bytes indexed to match offsetConstant.

 {maxBytes} – If there is a record limit size, this expression will limit the sum of lenConstant to this

maximum.

15.4.2.12 canDeviceSelector

The canDeviceSelector Component is specific to the standard MegaSquirt MS2 and MS3 protocol. This

component will produce a dropdown with all controllers configured within the application project. The

assigned Constant value will be set to the CAN ID assigned to that controller in the application.

Syntax:

 dialog = channelSelector, "Select Channel"

 canDeviceSelector = "Location of load data", device_canid

 ; device_canid is a defined Constant

15.4.2.13 channelSelector

The channelSelector Component is specific to the standard MegaSquirt MS2 and MS3 protocol. This

Component will produce a Dropdown with all defined Controller OutputChannels. This Component requires

2 Constants to operate offsetConstant and sizeConstant with a third optional Constant can_idConstant

o offsetConstant – The offset set of the selected OutputChannel will be set in this Constant.
o sizeConstant – The data size in bytes of the selected OutputChannel will be set in this Constant.
o can_idConstant – If defined, a Constant that provides the CAN ID of the Project Controller to list

OutputChannels for. If this is not defined, the current controller channels will always be displayed.
If the value of the can_idChannel changes, the dropdown will automatically be repopulated.

Enable and visible expressions are honored as always.

Example Syntax:

 dialog = channelSelector, "Select Channel"

 canDeviceSelector = "Location of load data", device_canid

 channelSelector= "Load axis", loadOffset, loadSize, device_canid

This example makes use of a canDeviceSelector to set device_canid and drive what controller

OutputChannels are listed in the channelSelector

15.4.2.14 canClientIdSelector

The canClientIdSelector Component is specific to the standard MegaSquirt MS2 and MS3 protocol. This

component will scan all CAN ID’s using the MegaSquirt pass through protocol. A dropdown will be

presented with a description of devices found at each CAN ID.

One Constant is required, this will contain the value of the selected CAN ID.

Example Syntax:

EFI Analytics, Inc – Proprietary

 pg. 71 ©EFI Analytics, Inc.

canClientIdSelector = "Remote CAN ID", remote_can_id

remote_can_id is a Constant.

15.4.2.15 indicatorPanel

An indicator panel is used to display 1 or more indicators similar to those defined in [FrontPage] for

dashboards, but within the context of a dialog.

Syntax:

 indicatorPanel = panelName, numberOfColumns, { optional enabledExpression }

This entry is then followed by definitions for the indicators to be added to the indicatorPanel. The indicator

definition is the same syntax as used in the [FrontPage] section. All indicators defined in the [UserDefined] /

[UiDialogs] section will be added to the last defined indicatorPanel.

Example Syntax for above dialog:

indicatorPanel = testIndicatorPanel, 2, { 1 }

 indicator = { ready }, "Not Ready", "Ready", red, black, green, black

 indicator = { crank }, "Not Cranking", "Cranking", blue, black, green, black

 indicator = { startw }, "ASE OFF", "ASE", cyan, black, green, black

 indicator = { warmup }, "WUE OFF", "WUE", yellow, black, green, black

 indicator = { tpsaccaen }, "TPS Accel", "TPS Accel", white, black, green, black

 indicator = { mapaccaen }, "MAP Accel", "MAP Accel", darkGray, black, green, black

 indicator = { tpsaccden }, "TPS Decel", "TPS Decel", gray, black, green, black

 indicator = { mapaccden }, "MAP Decel", "MAP Decel", lightGray, black, green, black

 indicator = { mapaccden }, "MAP Decel", "MAP Decel", magenta, black, green, black

dialog = indicatorPanelDialog, "Test Indicator Panel", border

 panel = testIndicatorPanel, Center

EFI Analytics, Inc – Proprietary

 pg. 72 ©EFI Analytics, Inc.

15.4.3 readoutPanel

readoutPanel adds a group of runtime readouts, basic readout type gauges, that are added to your dialog

like any other panel.

Syntax:

readoutPanel = aUniqueName, numberOfColumns, [Optional Enable Condition]

This entry is then followed by as many readout entries as you desire. Readout has 3 different syntaxes.

readout = aPredefinedGaugeName ; use any gauge defined in GaugeConfiguration

readout = anOutputChannelName ; This will have no mins/maxes.

readout = channel, Title, Units, min, max, LowDanger, LowWarn, HighWarn, HighDang, valDigits, ld

This gives the greatest control specific to this view.

Example Syntax for above readoutPanels:

; 2 x 2

readoutPanel = oilpReadouts2Rows, 2, { 1 }

 readout = OilPressGauge ; use the name of a predefined gauge

 readout = rawClt ; Use an OuputChannel name

 ; define the gauge here

 ; channel Title Units Lo Hi LoD LoW HiW HiD vd ld

 readout = coolant, "CLT", "°C", -40, 140, -15, 1, 95, 110, 1, 1

 readout = RPMValue; reference gauge defined in GaugeConfigurations

; 5 Stacked.

readoutPanel = oilpReadouts6Rows, 1, { 1 }

 readout = OilPressGauge ; use the name of a predefined gauge

 readout = rawClt ; Use an OuputChannel name

 ; define the gauge here

 ; channel Title Units Lo Hi LoD LoW HiW HiD vd ld

 readout = coolant, "CLT", "°C", -40, 140, -15, 1, 95, 110, 1, 1

 readout = RPMValue ; reference gauge defined in GaugeConfigurations

 readout = afr1Gauge ; reference gauge defined in GaugeConfigurations

EFI Analytics, Inc – Proprietary

 pg. 73 ©EFI Analytics, Inc.

15.4.4 runtimeValue

Syntax:

 field = “User Label”, someOutputChannel, { enabledExpression }, {visibleExpression }

While connected, this readout will continue to display the OutputChannel value.

For greater control, see readoutPanel and readout.

Example Syntax for above dialog:

dialog = tacho, "Tacho Output"

 field = "Tacho Output Enabled", tacho_opt80

 field = "Output On:", tacho_opt3f, { tacho_opt80 }

 runtimeValue = "Engine RPM" , rpm

 field = "Fixed or variable", tacho_optvar, { tacho_opt80 }

 field = "Speed", tacho_opt40, { tacho_opt80 && (tacho_optvar == 0) }

 field = "Scaling", tacho_scale, { tacho_opt80 && (tacho_optvar == 1) }

15.4.5 Dialog Layouts

Dialog layouts control the placement of components within the dialog. There are several supported layouts

available for use when defining a dialog.

 yAxis – Place items from top of dialog to the bottom in a single column

 xAxis – place items from left to right on a single row

 border – placement of items to pull to 1 edge (North, South, East, West) or fill the Center region

 card – Stack multiple panels on top of each other with expressions to determine which is visible

 indexCard - Place items from top of dialog to the bottom in a single column, only the panel in focus

is shown at full size, the remainder will be show at a fraction of full height.

EFI Analytics, Inc – Proprietary

 pg. 74 ©EFI Analytics, Inc.

15.4.5.1 yAxis Layout

yAxis Layout is the default layout and will be used in any case where there is no layout defined in the dialog

definition row. This is the most common layout for adding basic row Item components that can be placed

on a single row and do not support resizing.

Simple yAxis dialog layout

Figure 15-11

In this simple dialog there were 4 items added using an xAxis layout. They are simply placed from top to

bottom with each component on a row.

15.4.5.2 xAxis Layout

xAxis Layout will place components in the dialog from left to right in a single row. The xAxis layout is most

commonly used to place panels side by side.

EFI Analytics, Inc – Proprietary

 pg. 75 ©EFI Analytics, Inc.

xAxis layout placing 3 dialogs as panels in 1 dialog

Figure 15-12

Using the xAxis layout we have placed 3 defined dialogs into a single dialog as 3 columns with equal sizing.

The xAxis layout supports 1-n components, typically other dialogs added as a panel.

Code snippet:

 dialog = operatingPara_config, "Operating Parameters Configuration" xAxis

 panel = operatingPara_column_1

 panel = operatingPara_column_2

 panel = operatingPara_column_3

15.4.5.3 border Layout

The border layout provides the greatest flexibility. Not intended for use with Row Item components, but

larger components such as other dialogs, Table Editors, Curve Editors, Live Graph, etc..

Up to 5 components can be added to a dialog with a border layout. Each must be added with a placement

keyword of North, South, East, West or Center. Each keyword can only be assigned to 1 component per

dialog and not all the keywords need be used. It is perfectly fine to only place 2 components on a dialog

using a border layout.

EFI Analytics, Inc – Proprietary

 pg. 76 ©EFI Analytics, Inc.

Figure 15-13

North – will place the component against the top from edge to edge giving it only the minimum space

required by the component.

South – will place the component against the bottom from edge to edge giving it only the minimum space

required by the component.

West – will place the component against the left side from the North component to the South component

if there are North and South components, otherwise from top to bottom.

East – will place the component against the right side from the North component to the South component

if there are North and South components, otherwise from top to bottom.

Center – will fill the component to all space available. This is generally the best place to put components

such as Table Editors or Curve Editors as the will stretch to any dimension and nicely fill any additional

space if a user should resize the dialog.

EFI Analytics, Inc – Proprietary

 pg. 77 ©EFI Analytics, Inc.

Simple border layout Dialog

Figure 15-14

Code snippet:

 dialog = gen_pwm_a, "Generic PWM A", border

 topicHelp = "file://$getProjectsDirPath()/docs/MS3_Reference-1.4.pdf#genpwm"

 panel = gen_pwm_left_a, West

 panel = gen_pwm_curve_grapha, Center

Note: gen_pwm_left_a is a dialog already defined. gen_pwm_curve_grapha is a Card Layout dialog already

defined containing both a Table Editor and a Curve Editor. The Table Editor is currently visible. We will look

at this example again for the Card Layout.

15.4.5.4 card Layout

Stack multiple components in the same space allowing only 1 to be visible at any time with expressions to

determine which is visible.

When a dialog is defined with a card layout, 1-n components can be added as a panel, each with an

expression to determine if it is the visible panel. If there are multiple panels with expressions that evaluate

to true, the 1st panel with a true expression will be the one displayed.

EFI Analytics, Inc – Proprietary

 pg. 78 ©EFI Analytics, Inc.

Card Layout with Table Editor showing

Figure 15-15

In this example, the display of the Curve Editor or Table Editor is displayed on a card layout. The table and

curve are defined in the appropriate [TableEditor] and [CurveEditor] sections. The expression is based on

the user selection for Table or Curve.

Figure 15-16

Once the user changes the “Table or Curve” selector, the underlying Constant pwm_opt_curve_a is

immediately changed. The UI will detect this change and update the display at once.

Code snippet:

EFI Analytics, Inc – Proprietary

 pg. 79 ©EFI Analytics, Inc.

 dialog = gen_pwm_curve_grapha, "", card

 panel = pwm_duties_Tbl_a, Center, {pwm_opt_on_a && (pwm_opt_curve_a == 0)}

 panel = pwm_curve_a, Center, {pwm_opt_on_a && pwm_opt_curve_a}

15.4.5.5 indexCard Layout

The indexCard layout is used primarily with Curve Editors but any Component can be added. This layout will

place components along the Y axis from top to bottom much like the yAxis layout. However, the key

difference is only the item that has focus will be displayed at full size. All out of focus items will be

compressed allowing you to see them, but lessen the screen space used. Once the focus changes to

another item it will become the full size component and all others will be reduced in size.

In this example a group of Curve Editors used as Shift tables are placed on a single dialog using a indexCard

Layout.

Figure 15-17

EFI Analytics, Inc – Proprietary

 pg. 80 ©EFI Analytics, Inc.

Code Snippet:

 dialog = shiftTblsIndex_4sp, "Shift Tables", indexCard

 panel = shift_4spd

 panel = shift_out_3_curve,

 panel = shift_out_2_curve,

 panel = shift_out_1_curve,

The panels shift_4spd, shift_out_3_curve, shift_out_2_curve, shift_out_1_curve are all separate Curve

Editors defined in the Curve Editor Section.

15.5 DIALOG EXAMPLES
In this section will provide screenshots and the snippet required to construct the dialog. As these are

snippets, in some cases there will be references to Constants and OuputChannels that are not defined here,

but were in the original ini file. We will make note of the missing components and provide a brief

explanation of their definitions.

15.5.1 Basic Dialogs

Starting with a basic dialog containing only scalar and bit parameter class Constants:

Figure 15-18

15.5.1.1 Basic Dialog Definition

dialog = map_sample_dialog, "MAP Sample Settings"

 topicHelp = "file://$getProjectsDirPath()/docs/Help.3.4.pdf#mapsamp"

 field = "MAP Sample Method", mapsample_opt2

 field = "MAP Sample Window", mapsample_window, { mapsample_opt2 }

 field = "MAP Sample Angle", mapsample_angle, { mapsample_opt2 }

 field = "No. Sample Events", mapsample_opt1, { mapsample_opt2 }

Where:

mapsample_opt2 – A bit Constant defined in the [Constants] section
mapsample_window – A scalar Constant defined in the [Constants] section
mapsample_angle – A scalar Constant defined in the [Constants] section
mapsample_opt1 – A bit Constant defined in the [Constants] section

EFI Analytics, Inc – Proprietary

 pg. 81 ©EFI Analytics, Inc.

15.5.1.2 Visibility

The visibility of any row can be controlled within the ECU definition using an expression.

By editing the above dialog to add a conditional visibility expression:

Figure 15-19

dialog = map_sample_dialog, "MAP Sample Settings"

 topicHelp = "file://$getProjectsDirPath()/docs/Help.3.4.pdf#mapsamp"

 field = "MAP Sample Method", mapsample_opt2

 field = "MAP Sample Window", mapsample_window, { !mapsample_opt2 }

 field = "MAP Sample Angle", mapsample_angle, { mapsample_opt2 }

 field = "No. Sample Events", mapsample_opt1, { mapsample_opt2 }, {mapsample_opt2}

Similar to the Enabled Condition, the addition of the visibility expression changes the result of

mapsample_opt2 being false so the field is not just disabled, but no longer visible.

15.5.2 Multi-panel Example

Using an example from the Layouts section, this dialog is actually a compound of 3 dialogs. 2 Dialogs are

defined independently as the Left dialog, then a separate dialog is defined using a rad layout so it can

toggle from a Curve Editor to a Table Editor based on the user selection. All basic field components are

placed on in the left dialog. The final 3rd dialog uses a border layout. This allows the non resizable

components in a fixed space, but the Curve/Table are placed Center where they can fill any remaining

space if the dialog is stretched larger.

EFI Analytics, Inc – Proprietary

 pg. 82 ©EFI Analytics, Inc.

Figure 15-20

Syntax:

 dialog = gen_pwm_left_a, ""

 field = "Enable Generic PWM A", pwm_opt_on_a

 field = "Output Port/Pin", pwm_opt2_a, {pwm_opt_on_a}

 field = "Frequency / On-Off", pwm_opt_freq_a, {pwm_opt_on_a}

 field = "On Above Duty", pwm_onabove_a, {pwm_opt_on_a && (pwm_opt_freq_a == 0)}

 field = "Off Below Duty", pwm_offbelow_a, {pwm_opt_on_a && (pwm_opt_freq_a == 0)}

 channelSelector= "Load Axis", pwm_load_offset, pwm_load_size, {pwm_opt_on_a}

 field = "Load is Y axis on table, X axis on curve"

 field = "Table or Curve", pwm_opt_curve_a, {pwm_opt_on_a}

 field = "CLT/MAT Units", sensor_temp, {0}

 field = "" ; filler

 field = ""

 field = ""

 field = ""

 field = ""

 field = ""

 dialog = gen_pwm_curve_grapha, "", card

 panel = pwm_duties_Tbl_a, Center, {pwm_opt_on_a && (pwm_opt_curve_a == 0)}

 panel = pwm_curve_a, Center, {pwm_opt_on_a && pwm_opt_curve_a}

 dialog = gen_pwm_a, "Generic PWM A", border

 topicHelp = "file://$getProjectsDirPath()/docs/ Reference-1.4.pdf#genpwm"

 panel = gen_pwm_left_a, West

 panel = gen_pwm_curve_grapha, Center

15.5.3 Password protection of tuning dialogs

Any Dialog or Panel can have a user set Password. To view a tuning dialog the password must be

entered. If there are multiple child panels with assigned passwords, all passwords must be entered

before the dialog can be viewed. To enable password protection on a panel, assign a U32 Constant to

EFI Analytics, Inc – Proprietary

 pg. 83 ©EFI Analytics, Inc.

the dialog with the keyword:

userPassword = aU32Constant

Proper definition of the Constant is a U32 with a min of 0 and max of 4294967296 allowing for the full

range of possible values.

aU32Constant = scalar, U32, nextOffset, "", 1, 0, 0, 4294967296, 0

This Constant should be initialized to 0 as that indicates no password.

If a dialog that has an assigned password constant, the value of that Constant will be checked. If 0, the

user will be able to open the dialog. This dialog will then have a Tools menu containing a Menu Item to

set the password. Upon using this the user will be prompted for a password, that will be hashed and

stored in the U32.

If non 0, they will be prompted for a password that will be hashed and compared to stored has.

15.5.3.1 Example:
 dialog = optionlist, "Option List"

 userPassword = passwordConstant

 field = "DO NOT CHANGE ANYTHING HERE!"

 displayOnlyField = "Torque convertor lockup", tclu_outpin

 displayOnlyField = "Enable input", tclu_enablepin, {tclu_outpin}

 displayOnlyField = "Brake switch", tclu_brakepin, {tclu_outpin}

 displayOnlyField = "Idleup Output", ac_idleup_io_out, { ac_idleup_settings }

 displayOnlyField = "Scalar Test", mycan_id

Once a password is set, a menu to change and a menu to clear.

You may define many separate password Constants to password protect different dialog separately. You

may also use the same Constant on many dialogs. Once a user types a password, it is cached for 10

minutes. A user will not be prompted again for the same password within that period.

It is clearly advisable to encrypt the ini file for this to offer any security. When an ini File is encrypted with

TunerStudio MS Dev, then the tune files will automatically be encrypted as well.

EFI Analytics, Inc – Proprietary

 pg. 84 ©EFI Analytics, Inc.

16 [FRONTPAGE]

The front page section is used to define what gauges and indicators will be displayed on the default

dashboard and in what order. You can define 1 – n gauges. Each gauge entry will be assigned a gauge

template defined in the [GaugeConfigurations] section

 gauge1 = gaugeTemplate1

 gauge2 = gaugeTemplate2

 gauge3 = gaugeTemplate3

 gauge4 = gaugeTemplate4

 …

 …

They will be laid out in 2 rows left to right, row by row. The common number of gauges is 8 or 10 for proper

screen fitment.

 1 2 3 4

 5 6 7 8

Or for a 10 gauge layout:

 1 2 3 4 5

 6 7 8 9 10

Etc…

Alternatively, the application can use a Dashboard template with gauges each having an id assigned of

numbers 1-n. In this case the list of gauge templates will be applied in that order when loading the default

dashboard. This allows the use of a pre-designed dashboard that can be used with various firmwares with

different gauge configurations.

Indicators are a visual reference to a Boolean condition. They are either on or off. The default rendering of

this is a rectangle box with a label text. Each indicator is assigned:

 OutputChannel – Drives the state of the indicator, if value == 0 the state is Off, otherwise on

 Off Label – Text to be displayed when in off state, can include String Functions

 On Label – Text to be displayed when in on state, can include String Functions

 Off Background Color – Color of the background in an off state

 Off Text Color – Color of the label text in an off state

 On Background Color – Color of the background in an on state

 On Text Color – Color of the label text in an on state

 Enable Expression – Optional; If true the indicator will be included on the default dash, if false it will

be present on the right click menu, but will not be on the default dashboard.

indicatorTemplate definitions are the same as indicators, but the key difference is they will be displayed on

the right click menu, but not on the default dashboard.

EFI Analytics, Inc – Proprietary

 pg. 85 ©EFI Analytics, Inc.

16.1 EXAMPLE FRONTPAGE

 gauge1 = tachometer

 gauge2 = throttleGauge

 gauge3 = pulseWidth1Gauge

 gauge4 = cltGauge

 gauge5 = advdegGauge

 gauge6 = fuelloadGauge

 gauge7 = afr1Gauge

 gauge8 = matGauge

 gauge9 = pwGauge

 gauge10= dcGauge

;--

;Indicators = OutputChannel off-label on-label, off-bg, off-fg, on-bg, on-fg

;---------- ------------- --------- -------- ------- ------- ------ -----

 indicator = { ready }, "Not Ready", "Ready", white, black, green, black

 indicator = { crank }, "Not Cranking", "Cranking", white, black, green, black

 indicator = { startw }, "ASE OFF", "ASE", white, black, green, black

 indicator = { warmup }, "WUE OFF", "WUE", white, black, green, black

 indicator = { tpsaccaen}, "TPS Accel", "TPS Accel", white, black, green, black

 indicator = { mapaccaen}, "MAP Accel", "MAP Accel", white, black, green, black

 indicator = { tpsaccden }, "TPS Decel","TPS Decel", white, black, green, black

 indicator = { mapaccden}, "MAP Decel", "MAP Decel", white, black, green, black

 ; To be displayed on the right click menu, but not on the default dashboard

 indicatorTemplate = { accActive}, "ACC On", "ACC Off", white, black, green, black

*Each OutputChannel must be defined in the [OutputChannels] section.

17 [KEYACTIONS]

At this time there is only 1 KeyAction, showPanel.

Usage:

The showPanel Key Action allows you to define 1-n keys that if pressed in order and not released, will show

the referenced dialog. This can be used in lieu of a Menu to launch a dialog allowing for hidden dialogs

only to be shown with the proper key combination. If the dialog is password protected, the password

protection is honored and the user will be required to enter the password to open the dialog.

 showPanel = keyCombination, dialogName

Example:

 [KeyActions]

 showPanel = xyz, myDialog

EFI Analytics, Inc – Proprietary

 pg. 86 ©EFI Analytics, Inc.

The result of this is if the user now presses and holds x then y then z, myDialog will open.

EFI Analytics, Inc – Proprietary

 pg. 87 ©EFI Analytics, Inc.

18 [LOGGERDEFINITION]

18.1 OVERVIEW
There is support for extremely high speed memory logging to capture real-time firmware data at speeds

that typical transports cannot support. This is accomplished through “batch logging”. The controller is will

assign a region of RAM, typically a page. The firmware then constructs compact data set records that are

written to the allocated RAM as quickly as is needed or it can. Once the memory region is full, it pauses

logging and notifies the application to read page. The firmware will resume logging after the log data read

is completed. This type of logging works well for functions such as capturing trigger wheel patterns for

diagnostics, capturing MAP signal in relationship to crank position or injector and igniter state related to

crank angle.

The application is then responsible for reconstructing the data records into human readable data. Due to

the limited RAM, sub byte sized fields and interleaved fields are commonly used to maximize the

information captured within the limited RAM allocated.

The LoggerDefinition section allows the definition of 1-n Loggers with the commands and field definition

for each.

18.1.1 loggerDef

Each new logger will begin definition with a loggerDef entry. All rows following are assumed be attributes

of this logger entry until a new loggerDef entry is found or section end is reached.

18.1.1.1 Syntax:
 ;loggerDef = uniqueName, Display Name, type

 loggerDef = mapLogger, "MAP Logger", csv

18.1.1.1.1 Attributes

uniqueName – the reference name for this logger definition.

Display Name – The name of this logger display to the user and in the Logger selection.

Type – this drives the graphic viewer used to render the data to the user. The valid types are:

 composite – Renders crank and cam teeth with sync errors in an oscilloscope style.*

 tooth – Renders a bar chart style with each bar representing the time between crank teeth.*

 trigger – Renders a bar chart style with each bar representing the time between trigger events.*

 cvs – Renders and X-Y Plot. This is a generic format that works with any data set.

* A specific data format required.

18.1.2 Commands

startCommand – The command to start the logger. Standard Request reply protocol format.

stopCommand – The command to stop the logger. Standard Request reply protocol format.

dataReadCommand – The command to read the controller RAM. Standard Request reply protocol format.

EFI Analytics, Inc – Proprietary

 pg. 88 ©EFI Analytics, Inc.

dataReadyCondition – An expression to that will resolve to true where the controller RAM is ready to be

read.

dataReadTimeout – The maximum time in ms before the application should wait for the

 dataReadyCondition to become true before reading the controller RAM.

continuousRead – Boolean flag. If false, the application only expects 1 RAM read, then stop. Otherwise it

will continuously wait for the next page of data.

dataLength – The number of bytes expected for each read.

recordDef – Defines the header length, footer length and record length in bytes.

Format:

 ; recordDef = headerLen, footerLen, recordLen

Header and footer are optional, recordLen is required

defaultXAxis – Will set the default field for the UI to use in a X-Y plot of the Logger data.

Example:

 defaultXAxis = "A defined Field"

verticalMarker – Will place a vertical marker for reference on the X-Y Chart.

Format:

 ;verticalMarker = "Y Field Name", "X Field Name", "Title", position

 verticalMarker = "Pressure", "Crank Angle", "0° TDC", 0

overlaidDatasetCount – Sets the number of data sets to combine to remove NaN columns. This can be

used to deliver each column in a separate block, then NaN values will be replaced by a subsequent block of

data.

 logProcessorType - - By default the data will be read directly from the connection that is currently being

used for communication with the controller. However, in the case you require very high speeds and and

have an Ethernet connection and UDP capabilities, you can have the data broadcast using a UDP Stream. To

enable this set the logProcessorType and port to listen on. The control commands will still be sent via the

typical connection. See the example definition for a cylinder pressure logger at the end of this section:

 logProcessorType = UDP_Stream

 slavePort = 25555

stopOnExit – When set to true, the logger will be stopped upon exiting the view. In the case of TunerStudio

that would be upon leaving the High Speed Loggers tab. Default; false

18.1.3 Field Definitions

There are 3 types of fields that can be defined.

headerField – An optional field directly from a set of bits in the header with scale applied.

recordField – A field directly from a set of bits in the record with scale applied.

calcfield – A field that is calculated from recordField and Constants.

EFI Analytics, Inc – Proprietary

 pg. 89 ©EFI Analytics, Inc.

18.1.3.1 headerField

A header for each read can optionally be included. If defined, the header allows the additional fields to be

defined for the read for values that can be considered consistent through the rest of the read. This can save

space in the record for values that will not change. There is only 1 header per read. Addressing is in bit

positions.

Format:

;headerField = Name, HeaderName, startBit, bitCount, scale, units

Name – reference name of this headerField. To be referenced for any calcFields

HeaderName – The header for the log file.

startBit – position of 1st bit in the record for this field.

bitCount – the number of bits used for this field.

scale – the scale to convert from raw value to user value.

units – The units for the log file header.

18.1.3.2 recordField

A field directly from a set of bits in the record with scale applied. All addressing on the record is in bits as

opposed to the more typical bytes.

Format:

recordField = Name, HeaderName, startBit, bitCount, scale, units, updateCondition

Name – reference name of this recordField. To be referenced for any calcFields

HeaderName – The header for the log file.

startBit – position of 1st bit in the record for this field.

bitCount – the number of bits used for this field.

scale – the scale to convert from raw value to user value.

units – The units for the log file header.

updateCondition – Optional. For interleaved fields, a condition can be set to update the value of this field.

If false, it will retain the last updated value. This allows record data to be multi-mapped to prevent

redundant data. If not defined, the field is assumed to be updated with each record.

18.1.4 Additional Attributes

defaultXAxis – Will set the default field for the UI to use in a X-Y plot of the Logger data.

Example:

 defaultXAxis = "A defined Field"

EFI Analytics, Inc – Proprietary

 pg. 90 ©EFI Analytics, Inc.

verticalMarker – Provides vertical marker points for the UI to place along the X A

 verticalMarker = "Y Field Name", "X Field Name", "Title", position

18.2 EXAMPLE LOGGERDEFINTIONS

18.2.1 composite log

The composite log renders an oscilloscope “like” view for displaying the wheel teeth as the ECU sees it.

18.2.1.1 Required Log fields:

In order for the application to render the data using the Composite logger view, specific key fields are

required in the captured log.

PriLevel – The current level of the primary wheel, typically the crank tooth level.
SecLevel – The level of the secondary wheel, typically the cam tool level.
Trigger – Which wheel created the even, primary=0, secondary=1
ToothTime – Time in ms since last event.
Time – Total running time in ms.

18.2.1.1.1 Example defintion

 loggerDef = compositeLogger, "Composite Logger", composite

 startCommand = "w\$tsCanId\x05\x00\x0A\x00\x01\x01"

 stopCommand = "w\$tsCanId\x05\x00\x0A\x00\x01\x03"

 dataReadCommand = "r\$tsCanId\x08\x00\x00\x08\x00" ; 2K, std TS command format

EFI Analytics, Inc – Proprietary

 pg. 91 ©EFI Analytics, Inc.

 dataReadTimeout = 60000 ; time in ms

 dataReadyCondition = { logStat == 2 }

 dataLength = 2048 ; in bytes, including headers, footers and data //not used..

 continuousRead = false ;

 recordDef = 0, 0, 5; in bytes, the recordLen is for each record

 ;recordDef = headerLen. footerLen, recordLen

 ;recordField = Name, HeaderName, startBit, bitCount, scale, units, updateCondition

 recordField = sync, "Sync", 36, 4, 1.0, ""

 recordField = crnkCam, "CrnkCm", 34, 2, 1.0, ""

 recordField = edge, "Edge", 32, 2, 1.0, ""

 recordField = refTime, "RefTime", 0, 32, 0.001, "ms"

 ; hidden calcField serves as intermediate variable

 calcField = maxTime, "MaxTime", "ms", { maxValue(refTime) }, hidden

 ; Composite compatability fields

 recordField = priLevel, "PriLevel", 32, 2, 1.0, "H/L", { crnkCam == 0 }

 recordField = secLevel, "SecLevel", 32, 2, 1.0, "H/L", { crnkCam == 1 }

 recordField = trigger, "Trigger", 34, 2, 1.0, ""

 calcField = toothTime, "ToothTime", "ms", { refTime - pastValue(refTime, 1) }

 ; currently the "Time" field needs to be at the end of the row for it to jump to the

 ; record when clicking on the chart.

 ; So this is created here

 calcField = time, "Time", "ms", { refTime }

18.2.1.2 Tooth Logger

Renders a bar chart with tooth times for a visual view of tooth times to aid in seeing inversed polarity or

dropouts in input signal.

This log type requires the fields:

ToothTime – The time since last tooth in

EFI Analytics, Inc – Proprietary

 pg. 92 ©EFI Analytics, Inc.

18.2.1.3 cvs Logger

This is the most common and flexible logger. There are no constraints on what fields are logged. The

graphical rendering will be an X-Y plot supporting a single X axis with multiple Y axis traces. These logs are

often well viewed in MegaLogViewer using scatter plots or in the TunerStudio integrated X-Y chart.

Here we will define a Cylinder Pressure logger using UDP Streams. In this example the flexibility of how

your data may be passed is demonstrated at the cost of showing how complex it can get.

How this data is structured. Each UDP datagram contains the cylinder pressure for a pair of cylinders from

135° BTDC to 135° ATDC every 1 crankshaft degree. Thus a UDP datagram contains 270 4 byte records with

2 U16’s in each record representing the cylinder pressure for 2 cylinders. This makes a total of 1080 bytes

per datagram. The overlaidDatasetCount attribute is used to accumulate the data from 4 datagrams to

include the pressures from all 8 cylinders in each single page of data displayed. The defined header field

pressurePair allows the software to associate each datagram with the pair of specific cylinders.

The firing order is defined elsewhere in the tune and the logs header labels are generated using

$stringValue() function referencing the firing order array in the tune data. The

loggerDef = cylPressLogger, "Cylinder Pressure Logger", csv

 startCommand = "\xFF\x00"

 stopCommand = "\xFE"

 ;continuousRead = true ;

 logProcessorType = UDP_Stream

 slavePort = 25555

 ;recordDef = headerLen. footerLen, recordLen

 recordDef = 4, 0, 4; in bytes, the recordLen is for each record (multiple channel)

 overlaidDatasetCount = 4;

EFI Analytics, Inc – Proprietary

 pg. 93 ©EFI Analytics, Inc.

 ;headerField = NBytes, "No. Bytes", 0, 32, 1.0, ""

 headerField = pressurePair, "Pressure Pair", 30, 2, 1, "", {1}, hidden

 headerField = cntr, "Counter", 0, 16, 1, "", {1}, hidden

 ;recordField = Name, HeaderName, startBit, bitCount, scale, translate, units, updateCondition

 recordField = cylPressA, "Cyl $stringValue(Fire_Order_a)", 16, 16, {GAIN}, "psi", { pressureCyl == 0}

 recordField = cylPressB, "Cyl $stringValue(Fire_Order_b)", 16, 16, {GAIN}, "psi", { pressureCyl == 1}

 recordField = cylPressC, "Cyl $stringValue(Fire_Order_c)", 16, 16, {GAIN}, "psi", { pressureCyl == 2}

 recordField = cylPressD, "Cyl $stringValue(Fire_Order_d)", 16, 16, {GAIN}, "psi", { pressureCyl == 3}

 recordField = cylPressE, "Cyl $stringValue(Fire_Order_e)", 0, 16, {GAIN}, "psi", { pressureCyl == 0}

 recordField = cylPressF, "Cyl $stringValue(Fire_Order_f)", 0, 16, {GAIN}, "psi", { pressureCyl == 1}

 recordField = cylPressG, "Cyl $stringValue(Fire_Order_g)", 0, 16, {GAIN}, "psi", { pressureCyl == 2}

 recordField = cylPressH, "Cyl $stringValue(Fire_Order_h)", 0, 16, {GAIN}, "psi", { pressureCyl == 3}

 calcField = startAngle, "StartAngle", "°", -135, hidden

 calcField = crankAngle, "Crank Angle", "°", { startAngle + (highSpeedRecordNumber()+1)}

 ;verticalMarker = "Y Field Name", "X Field Name", "Title", position

 verticalMarker = "Crank Angle", "Crank Angle", "0° TDC", 0

 defaultXAxis = "Crank Angle"

Example rendering of this data:

EFI Analytics, Inc – Proprietary

 pg. 94 ©EFI Analytics, Inc.

19 [PORTEDITOR]

Figure 19-1

The PortEditor is a configurable standard dialog. It allows the creation of trigger condition for the Controller

to activate and deactivate specified outputs based on user defined conditions. By mapping each keyword to

an appropriate array, the UI will then set the array values based on user input.

The configuration of this dialog involves a 1D array of a length equaling the number of output pins, then a

series of arrays nPins x nOfconditions. In Figure 19-1 there 12 Pins defined with 2 possible conditions, thus

each condition array is expected to be [12x2] in size. If you wish to have 3 conditions, resize these arrays to

[12x3] each.

Array Configuration for 12 PINs and 2 conditions:

1D Arrays:

 enabledPorts – Map to a 1D array number of PINS (12) long. 1=enabled, 0=disabled.

 powerOnValue – Pin State when controller boots. 0=off 1=on

 triggerValue – Pin State when user condition met. 0=off 1=on

2D Arrays size size [numberOfPorts x NumberOfConditions-1]:

 conditionalRelationship – array [numberOfPorts x nConditions – 1] Set relation between conditions

2D Arrays, each of size [numberOfPorts x NumberOfConditions]:

 outputCanId (optional) – Will hold the CAN ID of the target controller.

 outputOffset – The runtime read offset of the selected controller [OutputChannels]/

When using XCP, this will contain a 4 byte ODT address.

EFI Analytics, Inc – Proprietary

 pg. 95 ©EFI Analytics, Inc.

 outputName (optional)– Holds a CRC16 of the OutputChannel name. When the address for the

referenced channel does not match, the address/offset will be updated. This array needs to be of

type U16.

 outputSize – The size in bytes of the selected controller [OutputChannels], if extendedDataInSize

option is active, upper 2 bits will indicate floating point or sign types. 0x40 set represents a Floating

point, 0x80 represents a Signed type.

 operators – The select operational relationship and permitted operators

 threshold – Set user threshold value, this will be scaled as the [OutputChannels] selected.

 hysteresis – Set user hysteresis, will be scaled to match the selected [OutputChannels]

 portEnabledCondition (optional) – Hold array of expressions, 1 for each port label to determine if

the PortLabel should be visible. These must be in the same index order as the defined Port Labels.

 portActiveDelay(optional) – An array with the time delay before the port will become active, after

the condition is true.

 portInactiveDelay(optional) – An array with the time delay before the port will become inctive,

after the condition is true.

 [PortEditor]

 ; map the arrays and supply the labels.

 ; all arrays are expected to be the same length in the first dimension

 ; thus a [7] array will be 7 ports in length and expect 7 labels

 ; The second dimension will drive the number of conditions per array.

 ; thus a [7x2] array will have 2 conditions joined by the conditionRelationship.

 ; a [7x3] will have up to 3 conditions.

 portEditor = std_port_edit, "Output port Settings"

 topicHelp = "http://www.megamanual.com/mt28.htm#sp"

 ; 1st the array constant, then the labels in the index order.

 enabledPorts = psEnabled, "PM2 - FIdle", "PM3 - Injection LED", "PM4 - Accel

LED", "PM5 - Warmup LED", "PT6 - IAC1", "PT7 - IAC2", "PA0 - Knock Enable"

 ; new CAN id, optional if psCanId is set to a valid array equal in size to

 ;outputOffset, it will be in the UI.

 outputCanId = psCanId ; optional CAN ID of the target controller.

 outputOffset = psOutOffset

 outputSize = psOutSize

 operators = psCondition, "<", "=", ">" ; the actual ASCII value of the

 ; operator will be sent to the controller

 threshold = psThreshold

 hysteresis = psHysteresis

 powerOnValue = psInitValue

 triggerValue = psPortValue

 conditionRelationship = psConnector, " ", "|", "&"

 portEnabledCondition = { 1 }, { NOS_STAGES_RACE < 1 }, { NOS_STAGES_RACE < 2 }, {

(NOS_STAGES_RACE < 3) }, { 1 }, { 1 }, { 1 };

 activateOption = extendedDataInSize ; Will place sign and type flags in upper

nibble of outputSize

The appropriate arrays should be defined in [Constants] section. In the above example these Constants are

assumed to be defined.

 psEnabled – [7]

 psOutOffset – [7x2]

 psOutSize – [7x2]

EFI Analytics, Inc – Proprietary

 pg. 96 ©EFI Analytics, Inc.

 psCondition – [7x2]

 psThreshold – [7x2]

 psHysteresis – [7x2]

 psInitValue – [7]

 psPortValue – [7]

 psConnector – [7]

 psCanId – [7x2]

Example Constants section:

 psEnabled = array , U08, 0, [51], "", 1, 0, 0, 1, 0, noSizeMutation

 psCondition = array , U08, 51, [51x2], "", 1, 0, 32, 124, 0, noSizeMutation

 psConnector = array , U08, 153, [51], "", 1, 0, 32, 124, 0, noSizeMutation

 psInitValue = array , U08, 204, [51], "", 1, 0 0, 1, 0, noSizeMutation

 psPortValue = array , U08, 255, [51], "", 1, 0, 0, 1, 0, noSizeMutation

 psOutSize = array , U08, 306, [51x2], "", 1, 0, 0, 255, 0, noSizeMutation

 psOutOffset = array , U16, 408, [51x2], "", 1, 0, 0, 1024, 0, noSizeMutation

 psThreshold = array , S16, 612, [51x2], "", 1, 0, -32768, 32767, 0, noSizeMutation

 psHysteresis = array , S16, 816, [51x2], "", 1, 0, -32768, 32767, 0, noSizeMutation

EFI Analytics, Inc – Proprietary

 pg. 97 ©EFI Analytics, Inc.

20 [REFERENCETABLES]

20.1 OVERVIEW
Sensor data is commonly non-linear creating a situation where the most efficient way to convert adc input

data to a true value becomes a lookup table. The [ReferenceTables] section enables text based definition of

raw lookup tables that can be scaled and written to the controller as normalized data. This allows the use

of a broad set of supported sensors and the ability to support new sensors without a firmware change. In

this section you can define multiple referenceTables and tableGenerators.

The view of this component will be driven by the selected generator and solution

20.2 COMMANDS
tableWriteCommand – the write command for writing the table. Standard Request reply protocol format.

tableBlockingFactor – The maximum block size that will be written during table writes.

tableCrcCommand – Optional CRC32 command. This is used to verify the table in the controller matches a

known solution.

20.3 DEFINING A REFERENCE TABLE
Reference table definitions will always start with a row beginning with the keyword referenceTable and

attributes name and title:

referenceTable = std_therm_clt, "Calibrate Coolant Table..."

EFI Analytics, Inc – Proprietary

 pg. 98 ©EFI Analytics, Inc.

Additional attributes that will be defined in the rows immediately following.

20.3.1 Required Attributes

tableIdentifier – a single byte numeric identifier to specify the target table. Multiple tables can be added

to a single dialog using a comma delimited string of id’s and titles:

 tableIdentifier = 0, "Coolant Temperature Sensor", 1, "Air Temperature Sensor"

adcCount – the number of translated elements in the table.

bytesPerAdc– the number of bytes of the translated element for each ADC, 1 for U08, 2 for U16, etc.

scale – The amount to scale the value by before writing it to the controller. Using 10, 14.7 -> 147

20.3.2 Optional attributes:

tableStartOffset – set the offset to the 1st write position. Default is 0

tableLimits – specifies the min and max values to write to the table, with the default value for the railed

out values.

 id, min, max, default

 tableLimits = 000, -40, 350, 180

min = -40
max = 350°F
default = 180°F

topicHelp – Optional help reference. See User Help

20.3.3 Solutions

Each Reference table is assigned 1 or more solutions. A solution will have 1 or more fully configured Table

Generators or any expression that will produce the desired value through mathematical expression or

lookup using an inc file.

20.3.4 Table Generators

The Table Generator will be responsible for producing the raw data to be written to the controller. The user

inputs are up to the generator selected.

Each reference table must have at least 1 table generator assigned.

Available Table Generators:

thermGenerator - as used for temp sensor calibration

linearGenerator – will generate linear output based on 2 volt / AFR points.

fileBrowseGenerator – will allow the user to browse for their own inc file for custom sensors

20.3.4.1 thermGenerator

The thermGenerator is primarily for temperature sensors. It allows the user to input 3 resistance /

temperature points, then generates the non-linear standard temperature ADC data. You may also add 1-n

pick list options.

EFI Analytics, Inc – Proprietary

 pg. 99 ©EFI Analytics, Inc.

To assign pick list options the keyword thermOption is used:

tableGenerator = thermGenerator, "Thermistor Measurements"

;thermOption = name, resistor bias, tempPoint1(C), resPoint1, tempPoint2, resPoint2, tempPoint3, resPoint3

 thermOption = "GM", 2490, -40, 100700, 30, 2238, 99, 177

 thermOption = "Chrysler 85 up", 2490, 5.5,24500, 30.5, 8100, 88.3, 850

 thermOption = "Ford", 2490, 0, 94000, 50, 11000, 98, 2370

 ...

20.3.4.2 linearGenerator

A 2-point generator typically used for linear WB definition if no picklist solution is available.

 solution = "Custom Linear WB", linearGenerator

20.3.4.3 fileBrowseGenerator

A widget that will display a File Browse button, then generate the data from the inc file.

 solution = "Custom inc File", fileBrowseGenerator

20.4 EXAMPLE ENTRIES:

20.4.1 O2 Calibration

This entry will write a table of 1024 single byte values as AFR * 10

EFI Analytics, Inc – Proprietary

 pg. 100 ©EFI Analytics, Inc.

referenceTable = std_ms2geno2, "Calibrate AFR Table..."

 topicHelp = "http://www.megamanual.com/mt28.htm#oa"

 tableIdentifier = 002, "AFR Table"

 adcCount = 1024 ; length of the table

 bytesPerAdc = 1 ; using bytes

 scale = 10 ; scale by 10 before sending to controller

 ;tableGenerator = Generator Type, Label, xUnits, yUnits, xLow, xHi, yLow, yHi ;

 tableGenerator = linearGenerator, "Custom Linear WB", "Volts","AFR", 1, 4, 9.7, 18.7

 tableGenerator = fileBrowseGenerator, "Browse for Inc File"

 solutionsLabel = "EGO Sensor"

 solution = " ", { } ; bank row in case no match found. Must remain at top.

 solution = "Narrowband", { table(adcValue*5/1023 , "nb.inc") } ;

 solution = "AEM Linear AEM-30-42xx", { 9.72 + (adcValue * 0.0096665) } ; 9.72:1 - 19.60:1

 solution = "AEM 30-2310, 30-4900, X-Series", { 7.3125 + (adcValue * 0.0116080) } ; 7.31:1 - 19.18:1

 solution = "Autometer 0V=10:1, 4V=16:1", { 10 + (adcValue * 0.0073313783) }

 solution = "Daytona TwinTec", { 10.01 + (adcValue * 0.0097752) }

 solution = "DIY-WB", { table(adcValue/4, "WBlambda100MOT.inc")*14.7 / 100.0 }

 solution = "DynoJet Wideband Commander", { adcValue * 0.00784325 + 10 }

 solution = "F.A.S.T. Wideband", { adcValue * 0.01357317 + 9.6 } ; 838.8608

 solution = "FJO WB", { table(adcValue*5/1023 , "fjoWB.inc") }

 solution = "Innovate LC-1 / LC-2 Default", { 7.35 + (adcValue * 0.01470186)}

 solution = "Innovate / PLX 0.0-5.0 10:1-20:1", { 10 + (adcValue * 0.0097752)}

 solution = "Innovate 1.0-2.0", { adcValue * 0.049025}

 solution = "LambdaBoy", { table(adcValue*5/1023 , "lambdaBoy.inc") }

 solution = "NGK Powerdex", { 9 + (adcValue * 0.0068359375) }

 solution = "TechEdge DIY Non-Linear", { table(adcValue*5/1023 , "TechEdge_DIYwbo2.inc") }

 solution = "TechEdge Linear", { adcValue * 0.0097752 + 9 }

 solution = "Zeitronix - Non Linear", { table(adcValue*5/1023 , "zeitronix.inc") }

 solution = "Zeitronix - Linear Default", { 9.6 + (adcValue * 0.0097752) }

 solution = "Custom Linear WB", linearGenerator

 solution = "Custom inc File", fileBrowseGenerator

20.4.2 Temperature Sensor Calibration

Managing 2 reference tables. Each is 1024 WORD temperature values

EFI Analytics, Inc – Proprietary

 pg. 101 ©EFI Analytics, Inc.

referenceTable = std_ms2gentherm, "Calibrate Thermistor Tables..."

 topicHelp = "http://www.megamanual.com/mt28.htm#oh"

 tableIdentifier = 000, "Coolant Temperature Sensor", 001, "Air Temperature Sensor"

 ; tableLimits (optional) = intentifier, min, max, defaultVal

 ; will set the default value if value is outside the min and max limits.

 tableLimits = 001, -40, 350, 70

 tableLimits = 000, -40, 350, 180

 adcCount = 1024 ; length of the table

 bytesPerAdc = 2 ; using shorts

 scale = 10 ; scale by 10 before sending to controller

 ;tableGenerator = Generator type, Label

 tableGenerator = thermGenerator, "Thermistor Measurements"

 tableGenerator = fileBrowseGenerator, "Browse for Inc File"

 thermOption = "GM", 2490, -40, 100700, 30, 2238, 99, 177

 thermOption = "Chrysler 85 up", 2490, 5.5,24500, 30.5, 8100, 88.3, 850

 thermOption = "Ford", 2490, 0, 94000, 50, 11000, 98, 2370

 thermOption = "Saab (Bosch)", 2490, 0, 5800, 80, 320, 100, 180

 thermOption = "Mazda", 50000, -40, 2022088, 21, 68273, 99, 3715

 thermOption = "Mitsu", 2490, -40, 100490, 30, 1875, 99, 125

 thermOption = "Toyota", 2490, -40, 101890, 30, 2268, 99, 156

 thermOption = "RX-7_CLT(S4 & S5)", 2490, -20, 16200, 20, 2500, 80, 300

 thermOption = "RX-7_MAT", 42200, 20, 41500, 50, 11850, 85, 3500

 thermOption = "RX-7_AFM(S5 in AFM)", 2490, -20, 16200, 20, 2500, 80, 300

 thermOption = "BMW E30 325i", 2490, -10, 9300, 20, 2500, 80, 335

 solution = "3 Point Therm Generator", thermGenerator

 solution = "Custom inc File", fileBrowseGenerator

EFI Analytics, Inc – Proprietary

 pg. 102 ©EFI Analytics, Inc.

21 [SETTINGCONTEXTHELP]

Use this section to add short help tips to each constant or PcVariable . List the constants you would like to

add help tips to then type out the tip inside the quotes. The help tip will appear on the dialog as a small

blue square with a

question mark which can be viewed by hoovering over the question mark or clicking on it to open a small

dialog bubble. Exp. Below

[SettingContextHelp]

 ; constantName = "Help Text"

 MatRtdRPMHi = "Full MAT spark retard is applied above this RPM."

 MatRtdRPMLo = "No MAT spark retard is applied below the this RPM."

Figure 21-1

EFI Analytics, Inc – Proprietary

 pg. 103 ©EFI Analytics, Inc.

22 EXPRESSIONS AND MATH FUNCTIONS

22.1 EXPRESSIONS
Expressions are built using the values of other Constants, PcVariables or OutputChannels combined with

supported functions and operators to produce values for each attribute. This allows the values to be

dynamically set based on other conditions and preferences.

Expressions can be used in in most cases instead of hard numeric values. This is common with scale and

translate

It is very acceptable to use expressions extensively throughout the ECU Definition file. Expressions are used

to determine when components are enabled or disabled as well as visible or not. There is a fast and flexible

math interpreter built into all applications. The syntax to be followed is c like expressions supporting all

standard operators with proper order of execution.

For complex expressions, it is common to create a formula based OutputChannel that can then be

referenced as a single variable. When creating an OutputChannel, you can reference any Constant or

OutputChannel.

22.2 OPERATORS
 () grouping

 ! logical NOT

 ~ bitwise NOT

 - unary minus = negation

 * multiplication

 / division

 % modulus

 + addition

 - subtraction

 << left shift

 >> right shift

 < less than

 <= less than or equal to

 == equal to

 > greater than

 >= greater than or equal to

 != not equal to

 & bitwise AND

 ^ bitwise XOR

 | bitwise OR

 && logical AND

 || logical OR

 ?: conditional

EFI Analytics, Inc – Proprietary

 pg. 104 ©EFI Analytics, Inc.

22.3 FUNCTIONS
Below is a list of functions available for use as needed.

Function Definition Usage

arrayValue Uses an index expression to lookup the value in

an array Constant. If the index expression is not

a whole number, the value will be interpolated.

Out of range indexes will return the nearest

railed out value.

arrayValue(array.[aConstantArray],

[indexExpression])

Note: the array constant name must

be prefaced by “array.” for the pre-

parser to properly map the constant

Smoothing* Smooths a field by averaging over the

smoothingFactor number of records.

smoothBasic(field, smoothingFactor)

sine Standard Sine of a value. sin(val)

cosine Standard Cosine of a value. cos(val)

arcsine Standard arcsine of a value. asin(val)

arccosine Standard arccosine of a value. acos(val)

tangent Standard Tangent of a value. tan(val)

arc tangent Standard Arc Tangent of a value. atan(val)

square root Standard Square Root, same as pow(val, 0.5) of

a value.

sqrt(val)

absolute Changes any negative values to the same

magnitude in the positive direction.

abs(val)

log Natural log of a value. log(val)

log base 10 Base 10 log of a value of a value. log10(val)

reciprocal The reciprocal of a value, or 1/val recip(val)

exponent Exponent of a value. pow(val, exponent)

round Rounds the value of a value to the nearest

integer value.

round(val)

floor Returns the largest (closest to positive infinity)

integer value that is greater than or equal to the

argument.

floor(val)

ceiling Returns the smallest (closest to negative infinity)

integer value that is greater than or equal to the

argument.

ceil(val)

exponent Returns Euler's number e raised to the power of

a double value.

exp(val)

isNaN Checks the output of an expression to result in a

invalid number

isNaN(val)

smoothFiltered Smooth a field using a matrix filter for less lag smoothFiltered(val)

EFI Analytics, Inc – Proprietary

 pg. 105 ©EFI Analytics, Inc.

accelHp Calculates HP based on Acceleration rate. accelHp(

 velocity (MPH),

 deltaVelocity(MPH),

 deltaTime(s),

 weight(lb)

)

Aero Drag Calculates the Aerodynamic Drag aerodynamicDragHp(

 velocity (m/s),

 airDensity (kg/m^-3),

 dragCoefficent,

 frontalArea (m^2)

)

Rolling Drag Calculates estimated rolling resistence rollingDragHp(

 speed (MPH),

 tirePressure (psi),

 weight (lbs)

)

Last Value Returns the last record value for the specified

field or expression

lastValue(anyField)

Historical Value Returns the value for the specified field or

expression from n records back

historicalValue(anyField, n)

Min Returns the minimum value resulting from

1-n expressions or variables

min(exp, exp, ...)

Max Returns the maximum value resulting from 1-n

expressions or variables

max(exp, exp, ...)

Max Value Returns the maximum historical value for the

specified field or expression

maxValue(anyField)

Min Value Returns the minimum historical value for the

specified field or expression

minValue(anyField)

selectExpression Uses the 1st expression as the index of the

expression to use. This can have 1 to n

expressions listed starting with index 0 as the

2nd parameter after the index expression. The

Index Expression is rounded to the nearest

integer value.

selectExpression(indexExpression,

expression0, expression1, …,

expressionN)

table Perform a table lookup using an inc file table(expression, 'fileName.inc')

tableLookup Perform a table lookup on 1D or 2D arrays

based on specified OutputChannel(s) and 1D

array lookup references.

It will provide the interpolated value for the

relative position of the lookup.

tableLookup([array.valueArrayName],

[array.lookupArrayName],

[lookupChannelName])

tableLookup([array.zParamName],

[array.xParamName],

[array.yParamName],

[xChannelName], [yChannelName])

Note: the array constant name must

be prefaced by “array.”

EFI Analytics, Inc – Proprietary

 pg. 106 ©EFI Analytics, Inc.

Accumulate* Accumulate and sum the expression

This allows totaling distance, mileage, fuel

consumption, etc.

accumulate(expression)

Persistent Accumulate* Same as accumulate, except the accumulated

value is persisted to the next session. Allows for

an Odometer.

persistentAccumulate(expression)

Get Main CAN_ID Returns the CAN ID of the primary controller in

a project.

getWorkingLocalCanId()

getChannelValueByOffset Will retrieve the user value of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelValueByOffset(offset)

getChannelScaleByOffset Will retrieve the scale of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelScaleByOffset(offset)

getChannelTranslateByOffset Will retrieve the translate of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelTranslateByOffset(offset)

getChannelDigitsByOffset Will retrieve the display digits of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelDigitsByOffset(offset)

getChannelMinByOffset Will retrieve the min of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelMinByOffset(offset)

getChannelMaxByOffset Will retrieve the maximum of a Controller

OutputChannel that has an offset matching the

parameter. The offset can be an expression that

resolves to an integer

getChannelMaxByOffset(offset)

getLogTime Returns the length in seconds of the currently

being captured data log. If not logging returns -1

getLogTime()

isOnline Reports online state. Will return 1 if connected

to the controller, 0 if offline.

isOnline()

isAdvancedMathAvaliable Some advanced functions are unavailable in

some applications or additions. This will report 1

if they are available.

isAdvancedMathAvaliable()

EFI Analytics, Inc – Proprietary

 pg. 107 ©EFI Analytics, Inc.

23 STRING FUNCTIONS

23.1 OVERVIEW
String functions are used to create String values that can be changed at runtime based on any set of

conditions. They are commonly used for Data Log Headers, Titles, Labels and Units. The StringFunctions are

supported by Constants, OutputChannels, Gauge Templates and Dialog Components.

23.1.1 Available Functions

23.1.1.1 bitStringValue([bitConstantName], [expression])

At runtime, this allows a segment of a string to be replaced with an option defined for a bit type Constant.

The expression should resolve to the desired index. This requires a bit Constant and an expression that

resolves to the proper index.

23.1.1.2 Example

Here we will create an indicator that will report a trouble based on a trouble code.

[PcVariables]

 troubleList = bits, U08, [0:2], "Ok", "O2 Sensor", "CLT Sensor", "IAT Sensor"

[FrontPage]

 indicator = { malFunc }, "No Codes", {Error: bitStringValue(troubleList, malFunc)}, green, black, red, black

The above relies on an OutputChannel that is 0 if there is no code, under sensor error, it will be a value

matching the index of the failed sensor. The result will be an indicator that will follow this matrix:

malFunc value Indicator state

0 Green Indicator with text: “No Codes”

1 Red indicator with black text: “Error: O2 Sensor”

2 Red indicator with black text: “Error: CLT Sensor”

3 Red indicator with black text: “Error: IAT Sensor”

23.1.2 stringValue([StringConstantName])

The stringValue() function is to include the value of a string Constant in a String. This is useful in situations

where you allow a user to name something such as a generic input using a string Constant or PcVariable.

The User name can then be referenced for data log field names and gauge titles.

The only parameter is the string Constant or PcVariable you wish to access.

23.1.2.1 Example Usages:

[GaugeConfigurations]

 sensor01Gauge= sensor01,{ stringValue(sensor01Alias) }, "",-10, 10, -10, -10, 10, 10, 1, 1

[Datalog]

 entry = sensor01, { stringValue(sensor01Alias) }, float, "%.1f"

sensor01Alias is assumed to be a string Constant or PcVariable with some value.

The application is responsible for resolving these string functions dynamically at runtime.

EFI Analytics, Inc – Proprietary

 pg. 108 ©EFI Analytics, Inc.

23.1.3 $getProjectsDirPath()

Provides access to the applications projects folder, This can be embedded in a string. At runtime this will be

replaced with the absolute path to the applications projects directory. Can be useful if you want one

common directory for all projects such as to access help files in a single folder, not in the specific project

folder.

23.1.3.1 Example Usage:

[UiDialogs]

 dialog = myDialog, "", yAxis

 topicHelp = "file://$getProjectsDirPath()/docs/Reference-1.4.pdf#deeplink"

 field = "Some field", someConstant

In this case $getProjectsDirPath() is used to access a common docs folder in the application projects folder.

23.1.4 $getWorkingDirPath()

Similar to $getProjectsDirPath(), but $getWorkingDirPath() provides access to the specific project that the

ECU Definition is a part of.

24 [FTPBROWSER]

A file browser to list, download and delete files from the controller is supported. This component uses an

FTP protocol, so is only available when connected via IP and TCP is available.

The FTPBrowser section allows configuration for FTP Browsers with 1 or more end points.

24.1 DEFINING AN FTP BROWSER:
ftpBrowser = referenceName, "Title", { enableCondition }

enableCondition is Optional.

24.1.1 Attributes

host (optional) – if not used, the connected controller is the expected target.

port (optional) – if not defined port 22021 is used.

user (optional) – if not defined anonymous is used. Ensure proper permissions

password(optional) – if not defined sd@efianalytics.com is used as an anonymous pw.

browseEnabled (optional) – expression to enable listing files.

 browseEnable = "Disabled user message", { expressionforEnabled }

readWriteEnable (optional) – expression to enable reading and deleting files.

 readWriteEnable = "Disabled user message", { expressionforEnabled }

if expressions are not present, they are assumed to always be true.

[FTPBrowser]

EFI Analytics, Inc – Proprietary

 pg. 109 ©EFI Analytics, Inc.

 ;ftpBrowser = referenceName, "Title", enableCondition

 ftpBrowser = sdCardBrowser, "SD Card 1 File Browser"

 ; All below are optional. if any of these settings is not present, the default value will be used.

 host = connectedController ; (default value = connectedController)

 port = 22021; (default = 22021)

 user = anonymous ; (default: anonymous)

 password = sd@efianalytics.com ; (default = sd@efianalytics.com)

 ; browseEnable = "Disabled user message", { expressionforEnabled }

 browseEnable = "Please Turn off the engine to view SD files", { isNaN(FILT_RPM) || FILT_RPM < 50 }

 ; readWriteEnable = "Disabled user message", { expressionforEnabled }

 readWriteEnable = "Please Turn off the engine to download or delete files", { isNaN(RPM) || RPM < 50 }

EFI Analytics, Inc – Proprietary

 pg. 110 ©EFI Analytics, Inc.

25 [DATALOGVIEWS]

The [DatalogViews] allows for the definition of predefined LogViews / quick Views available in editions that

have an integrated log viewer. iniSpecVersion 3.60 is required.

[DatalogViews]

; 1st one with no name will be the Default traces for the front tab

; each trace is defined as graph[graphNumber].[traceOnThatGraph]

; thus graph0.0 will be the 1st trace on the top graph, graph0.1

; will be the 2nd trace on the top graph.

; graph1.0 will be the 1st trace on the 2nd graph, etc...

graph0.0="RPM"

graph0.1="MAP"

graph0.2="TPS"

graph0.3="AFR"

graph1.0="CLT"

graph1.1="MAT"

graph1.2="Batt V"

; Now create Additional names tabs. The logViewName tag indicates a new Tab,

; The string provided will be the name of the tab displayed to the user.

logViewName = "Fueling"

graph0.0="RPM"

graph0.1="MAP"

graph0.2="TPS"

graph0.3="PW"

graph1.0="CLT"

graph1.1="MAT"

graph1.2="Batt V"

graph2.0="AFR"

graph2.1="AFR 1 Error"

graph2.2="AFR Target"

graph2.3="EGO cor1"

graph3.0="Duty Cycle1"

graph3.1="VE1"

graph3.2="Fuel: Accel PW"

graph3.3="Fuel: Warmup cor"

