
Binary MLG Logging (MLVLG) file format specification

No index entries found.

Document purpose:
 This document specifies the MLVLG file format.

Format purpose:
 This MLVLG file format is to serve as a standardized format for capturing controller data in binary format for
viewing software to open directly with no external dependencies.

Authors:
 Philip Tobin

Revision history:
 Rev. 0.9 – August 28, 2017- Phil Tobin – draft spec.
 Rev. 0.91 – August 31, 2017- Phil Tobin – support for bit fields added, incorporated edits per review..
 Rev. 0.92 – Sept 8, 2017- Phil Tobin – updated error in block ID’s..
 Rev. 0.93 – Sept 12, 2017- Phil Tobin – Added simple crc to record data..

Definitions:

• Datalog: A set of runtime data captured to a file

• Datalog session: time interval between datalog-on (begin datalog) and datalog-off (stop datalog) user
actions

• UNIX Standard 32bit timestamp: number of seconds elapsed since midnight Coordinated Universal Time
(UTC) of January 1, 1970, not counting leap seconds

Format structure:

One MLVLG file associates with (and therefore contains data of) one datalog session contained within 1 binary
file generally of the extension *.MLG. The *.MLG file extension will be associated to the appropriate EFI Analytics
Applications for viewing.

All data is expected in Big Endianess

A MLVLG file is made up of two sections:
1. Header
2. Data Block

Header Data Block Data Block Data Block ….

The header will always be at the start of the file, followed by n Data Block records.

Header

Purpose
 Header is a data structure to define the data captured in the remainder of the file.

1.2 Header format fields

- File format (6 bytes): unique identifier for MLVLG file format (same for any *. MLG file)
- Format version (2 bytes): unique identifier of the particular version of the MLVLG file format
- Date/Time (4 bytes): date/time encoded to Unix 32bit standard (1 second resolution) – This is an Optional field,
fill with 0’s if correct time stamp unavailable.
- Data Block start offset (4 bytes): offset in bytes of where Data Block starts in the file, relative to the beginning of
the file
- Record Length (2 bytes): length of output in bytes

Field Name Offset Length
(bytes)

Required Value

File Format 0 6 Yes MLVLG padded by 0 or in hex x4D x4C x56 x4C x47
x00

Format
Version

6 2 Yes Currently x00 x01, increase values may be used in the
future as the format is updated or enhanced.

Time Stamp 8 4 No Unix 32 bit timestamp. Time in seconds since the
epoch to the log start. If TimeStamp is not available set
to all 0’s - x00 x00 x00 x00

Info Data
Start

12 2 No This start offset must be after the LoggerField[]
definitions and before Data Begin Index
Set to 0 if no Log info Data.

Data Begin
Index

14 4 Yes The address of the 1st byte containing Type-Data pairs

Record
Length

18 2 Yes The length of a single data record for Logger Field data
not including Type-Pair overhead

Num Logger
Fields

20 2 Yes Number of expected Logger Fields. A Logger Field
Definition will be expected for each

Logger Field [] 22 55 * n Yes This will be an array of (Num Logger Fields * 55) in
length

Bit Field
Names

22+n*55 varies No Only available if Logger Fields contains Bit

Info Data Info
Data
Start

varies No Optional null terminated String. Unstructured
informational data that may include the firmware
version, date captured or any other informational text.

Logger Field – scalar

DisplayValue = (rawValue + transform) * scale
and

Field Name Offset Length
(bytes)

Value

Type 0 1 0=U08, 1=S08, 2=U16, 3=S16, 4=U32, 5=S32, 6=S64, 7=F32

Name 1 34 ASCII Character Representation, null terminated

Units 35 10 ASCII Character Representation, null terminated

Display Style 45 1 0=Float, 1=Hex, 2=bits, 3=Date, 4=On/Off, 5=Yes/No, 6=High/Low,
7=Active/Inactive

scale 46 4 A IEEE 754 float representing the scale applied to (raw+transform)

transform 50 4 A IEEE 754 float representing any shift of raw value before scaling

digits 54 1 S08 representing the number of decimal places to display to the
right

rawValue = DisplayValue / scale – transform

Logger Field - Bit

Info Data:

Core Header Bit Field
Names

Info Data Type-Data pairs.

Info Data is optional ASCII text that would normally be found in the header of a delimited log. It is unstructured
informational data that may include the firmware version, date captured or any other informational text.

2.2 Data Block structure
 Consists of "back-to-back" sequence of type-data pairs. Type-Data pairs allow for multiple data types to be
interleaved.

2.2.1 Type-Data pair format

- Type (1 byte): unique identifier describing the structure, contents and length of the following data
- Data (length is determined by the type): single data item characterized by the preceding type identifier

2.2.1.1 Type: Logger Field Data

Block Type: 0
Length: 4 + record length determined by adding the size of all Logger Fields defined in the Header

Field Name Offset Length
(bytes)

Value

Type 0 1 10 = U08_BITFIELD, 11 = U16_BITFIELD, 12 = U32_BITFIELD

Name 1 34 ASCII Character Representation, null terminated. If empty string,
this field will be suppressed and only the bit fields will be displayed

Units 35 10 ASCII Character Representation, null terminated

Display Style 45 1 0=Float, 1=Hex, 2=bits, 3=Date, 4=On/Off, 5=Yes/No, 6=High/Low,
7=Active/Inactive – Display for this field

Bit Field Style 46 1 0=Float, 1=Hex, 2=bits, 4=On/Off, 5=Yes/No, 6=High/Low,
7=Active/Inactive – Display for BitFields based on this field.

Bit Field Names
Index

47 4 Index in file of Bit Field Names start. Array of null terminated strings
to be used as bit field name. Array is defined by the bits field of this
structure. To suppress display of a BitField, use “INVALID”

bits 51 1 Number of valid bits, (right justified) in this bitfield

UNUSED 52 3 Filler to maintain consistent Logger Field size.

Field Name Offset Length
(bytes)

Required Value

Block Type 0 1 Yes Identifier for the type of block, a standard Data
Block is type defined below

Counter 1 1 Yes A rolling 1 byte block counter. Modulus of the
record number.

Data block 2 Variable Yes Contains different data depending on type. See
valid types below.

2.2.1.2 Type: Marker

Markers are positions with the data log that
indicate a graphical mark generally displayed
as a vertical red line in the log viewer to more
easily locate specific events.

Block Type: 1
Data length: 54 - [2 byte time] [50 byte null terminated comment.] + 2-bytes for record data.
data description/format: Date/Time timestamp
encoded in standard Unix 32bit format – This is
an Optional field, fill with 0’s if correct time
stamp unavailable.

Field Name Offset Length
(bytes)

Required Value

Block Type 0 1 Yes Identifier for the type of block, a standard Data
Block is type 0 or x00

Counter 1 1 Yes A rolling 1 byte block counter. Modulus of the
record number. Counter % 255

Timestamp 2 2 Yes A 2-byte Timestamp 10 us/bit.

Logger Field
Record

4 Record
Length

Yes RAW data for the Logger Fields in the same
order as defined in the header with no spacing.

crc Record
Length +

4

1 Yes 1 byte overflow from adding all values in the
Logger Field Record, does not include header.

Field Name Offset Length
(bytes)

Required Value

Block Type 0 1 Yes Identifier for the type of block, a standard Data
Block is type 1 or x01

Counter 1 1 Yes A rolling 1 byte block counter. Modulus of the
record number.

Timestamp 2 2 Yes If available, otherwise fill with 0’s.

Message String 4 50 Yes Null Terminated freeform string that will be
displayed in the data log as the reason for the
MARK

